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Abstract
Industrial Control Systems (ICS) have evolved from closed
and isolated systems to connectivity over the internet. This
has led to efficient system operations and flexibility in manag-
ing the distributed system that is usually spanned over a large
area. However, this has opened doors for new attacks e.g.,
malicious command injection, replay attacks etc., which were
previously not possible in the closed system design. Most of
these attacks were possible due to lack of authorization and
encryption in intra-ICS communication. To protect ICS from
such attacks secure communication protocols have been pro-
posed (e.g., secure Modbus). These protocols are becoming
increasingly popular in the ICS community. In this paper, we
analyze if secure Modbus protocol is vulnerable to side chan-
nel information leaks that can be leveraged to perform attacks
against the ICS despite of the encryption and authentication.
We use secure water treatment plant (SWaT) as our case study
for this work. We find that the attacker can learn SWaT ac-
tivities by monitoring packet lengths and timing variance in
the encrypted network traffic and profile the ICS activities.
Using this information the attacker can drop or delay critical
commands which result in malfunctions such as water tank
overflow and delay in various processes of the plant.

1 Introduction

Industrial control systems (ICS) are important infrastructures.
They are widely used in water treatment plants, power plants,
energy and petroleum industry, etc. Infiltration in these critical
infrastructure can raise alarming consequences such as large
scale black-outs, shutting down of oil pipelines, etc.

Traditionally ICS were closed and isolated systems, which
were cumbersome to manage, challenging to upgrade, and
add new features. Over the last decade, ICS have moved from
closed systems design to connectivity over the internet. Mod-
ern ICS use TCP protocol to connect various components
of the distributed system (servers, workstations, PLCs, sen-
sor and actuators), support sending commands over wireless

network, support remote login over internet, etc. [15]. This
evolution of ICS has led to efficient system operations such
as the ability to monitor multiple sensors and control actu-
ators spanning over a large area, ability to issue commands
remotely. However, the inter-connected nature of the ICS pre-
sented new security risks. Attacks targeting cyber components
(e.g., control system, network, servers etc.) of the ICS have
been demonstrated [9, 11, 16, 17, 24, 26]. Recent events such
as the Colonial pipeline attack [1] and the Florida water treat-
ment plant attack [3] have raised an important question i.e.,
how secure are the critical ICS systems?

Most of these attacks were possible because the network
protocols used in ICS were designed without security consid-
erations (e.g., no encryption, no authentication). Therefore, it
was possible for an attacker with relatively less privilege to
launch attacks by modifying commands in network packets,
replaying past commands, changing control logic [26]. The
attacker does not need to compromise any component of the
ICS, the above attacks could be launched simply by monitor-
ing the intra-ICS network traffic. To overcome this problem
secure communication protocols for ICS have been proposed.
One such example is secure Modbus [6, 25]. The secure Mod-
bus protocol is built on existing TCP protocol and utilizes
TLS for encrypted channel and authentication [6]. Modern
ICS are increasingly deploying encrypted communication pro-
tocols. The use of encryption in ICS communication protects
the ICS network traffic from command modification attacks,
session hijacking attacks, to privacy attacks. In this project,
we analyze if the state-of-the-art security protocols used for
securing modern ICS communications are adequate for pre-
venting network attacks in the ICS. Specifically, we show that
an attacker can leverage side channel information leaks to
launch attacks despite of encrypted communication channel.

Our motivation comes from website fingerprinting at-
tacks [10, 14, 18, 21, 23, 27] that target web applications and
learn users’ internet activities (e.g., which websites the user
is visiting, which videos the user is watching) in spite of
encrypted network channel. The main idea behind website
fingerprinting attacks is to monitor and analyze the encrypted
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network packets and profile details such as packet lengths
and timing relationships between packets to disclose users’
internet activities.

In the context of ICS, secure Modbus protocol prevents the
attacker from modifying commands or monitoring realtime
network in plaintext. However, some of the crucial informa-
tion about the intra-ICS communication might still get ex-
posed from the traffic metadata (e.g., source and destination
IP, packet timing, packet sizes, etc.) that are not obfuscated
by encryption. We find that an attacker can snoop on the
encrypted network communication, collect traffic metadata
information and profile the information to learn ICS activities
(e.g., timing variance of various commands, when a critical
command is sent). This can be achieved by monitoring the
timing behaviour of the communication between devices, e.g.,
Programmable Logic Controller (PLC) in the ICS, and mon-
itoring the packet lengths of the encrypted network traffic
(referred to as side channel information leaks henceforth).

Using the side channel information, the attacker can drop
a few packets containing a critical command (e.g., close the
valve and stop water supply) or delay critical commands (this
is a temporary delay instead of the traditional DoS attack). As
most actuator commands in ICS are time-critical in nature,
dropping or delaying such commands will cause the ICS to
malfunction. Therefore, despite of the encrypted communi-
cation channel and authentication, an attacker with relatively
few privileges can still attack the ICS.

In this work, using the SWaT testbed [20] as a case study.
We believe that our work is not tied to a specific ICS and it
extends to other ICS which are distributed in nature and use
secure Modbus (or similar) protocols. Our contributions are
as follows: :

1. We find that network traffic metadata reveals significant
details about the ICS activities such as cyclic nature of
operations (i.e., certain tasks are performed at fixed time
and in fixed intervals). In addition, the network patterns
e.g., source and destination of traffic, reveal the current
state of the ICS.

2. We demonstrate that crucial information about the ICS
can be obtained through side channel leaks. The attacker
can learn the stage transitions in ICS operations sim-
ply by profiling the network packet lengths and burst
frequency.

3. We demonstrate that attackers can leverage information
about the ICS learned from the side channel leaks to
perform active attacks that result in ICS malfunctioning
and disruptions in ICS operations.

4. Our results on MiniCPS simulator [4] shows that 4 hours
of network traffic profiling is enough to launch attacks
that results in water tank overflowing and delaying the
process stages which will lead to water supply shortage.

2 Background

In this section, we first present the ICS we use for our case
study, followed by the network protocol we are studying and
finally our threat model.

2.1 Water Treatment Plant (ICS) Architecture

We use a simulated version of the secure water treatment
plant (SWaT) in our experiments, which is a test bed from
SUTD [20] in Singapore. This test bed is widely used to
experiment hardware and software developments for real-
world ICS. SWaT represents a small scale representation of a
modern water treatment plant.

Figure 1a shows the SWaT testbed which is a distributed
control system that has 5-6 process stages. For each process
stage, a local PLC is used for computation and communicating
with sensors (e.g., water level sensors) and actuators (e.g.,
valve). Each process stage is controlled by the local PLC,
and the process stage transitions are sequential. The PLCs
communicate over wireless network, and share their current
state information.

For example, in stage 1 (the first square from right in Fig-
ure 1a), the PLC obtains the sensor readings and controls the
actuators, e.g., turn ON the pump or opening a valve to let
water flow in to the tank and constantly monitor the water
level. Based on the sensor readings that show the water level,
the PLC decides when to close the value and turn water pump
OFF. SWaT uses several other sensors in subsequent stages
to check the physical and chemical properties of water. The
current states of one PLC1 affect the states of other PLCs.
The plant operator can also manually control the actuators
through the HMI, and the SCADA system.

2.2 SWaT Network

The SWaT testbed uses WiFi to communicate between the
PLCs, and for communication between the process stages
and the HMI and SCADA. SWaT can be configured to use
Modbus/TCP or EtherNet/IP protocols. We limit our focus to
Modbus/TCP protocol.

2.2.1 Network Protocol

Modbus is protocol proposed by Modicon in 1979 for com-
munication among programmable logic controllers(PLCs).
Various versions of Modbus protocol have been pro-
posed including Modbus/RTU(series transmission) and Mod-
bus/TCP(Ethernet transmission) [5]. However, Modbus/TCP
is lack of authentication to establish the sessions and encryp-
tion of the communication [2], which exposes many vulner-
abilities. Attackers may spoof the master/slaves devices or
interfere with the TCP/IP connection [7]. Parian et al. [22]
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(a) Attacker compromises network access point (b) Attacker floods the switch

Figure 1: Water treatment plant architecture and Attack Model

proposed infecting the master with malware and man-in-the-
middle attacks on Modbus, making the master accept incorrect
information about the slave.

To limit the above attacks encrypted Modbus/TCP was pro-
posed by adding the TLS layer, which is called Modbus/TCP
Security [6] or secure Modbus. TLS provides authentication
capability so that the clients and servers need keys and certifi-
cates to identify each other before establishing connections.
Several papers analyze the system performance of secure
Modbus, such as the connection time [13]. However, no prior
work has studied what type of information the protocol re-
veals despite encryption that can be leveraged to learn the
ICS operations.

2.3 Threat Model
The goal of the attacker is to learn the ICS operations and
obstruct the normal operation of the ICS. In case of SWaT,
the attacker aims to cause a water tank over-flow which could
damage the plant equipment, delay the process stages. This
would delay the water purification timeline and eventually
lead to water supply shortage. In our work, we consider two
types of attacker: Attacker A who can compromise a network
access point such as a switch (shown in Figure 1a) and At-
tacker B can connect to the WiFi network of the plant (shown
in Figure 1b).

Attacker A can compromise a network access point by
scanning for vulnerable ports and installing malware in a
network access point [19]. Attacker A can be an IXP (or
ISP) employee who can record the network traffic of the
distributed ICS connected to the internet. Attacker A has the
following capabilities: The attacker knows the ICS design
such as number of process stages, PLCs, types of sensors and
actuators, number of tanks etc. In addition, the attacker can
obtain a specification of the ICS and knows which tasks are
performed by which PLCs (e.g., PLC1 controls water level
in Tank1, PLC2 performs chemical processes). The attacker
can compromise a network access point (e.g., switch) [12]
to snoop on the encrypted network traffic and profile ICS
activities based on the network packet metadata and side

channel information leaks (e.g., packet length, timing, burst,
direction of packet etc). The attacker can delay and drop
packets that pass through the compromised network device.

Attacker B has all the above capabilities of Attacker A,
except that Attacker B cannot compromise a network access
point. Instead, Attacker B is located close to the plant and
connects to the plant wireless network. This can be achieved
by exploiting bad security practices such as not changing
the default wireless password or through social engineering
attacks. With this, Attacker B can transmit spurious packets
between its fake nodes and delay the legitimate ICS network
traffic.

Attackers can also compromise a network access point by
exploiting known vulnerabilities such as CVE-2021-1374 and
CVE-2021-1611. However, the attacker cannot decrypt or
modify the network packet contents. We also assume that
the attacker cannot compromise any of the ICS components
(gain physical access, or network access), and cannot inject
spurious commands (false commands) in the network packets.
We assume that end to end encryption is used in the ICS
network.

3 Methodology

In this section we describe the various challenges to perform
the proposed attacks and the methodology addressing those
challenges.

3.1 Challenges
The following are the challenges that an attacker has to over-
come:

C1 Identifying the various process stages and critical com-
mands, e.g., in the SWaT testbed (i) identifying when
commands are sent to PLC1 or PLC2, (ii) when PLC1
closes the valve.

C2 Identifying which packets to drop or delay and launch
attacks with minimal packet drops or delays.
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C3 Because the intra-ICS communication between various
components does not occur at same frequency (i.e., some
components send signals at second level granularity,
other components operate at microsecond level), it is
hard to derive correlations in SWaT operations by man-
ual analysis.

Unlike website fingerprinting attacks where the attacker
can collect network traffic data and record web flows for mul-
tiple web services and compare that with the victim’s network
traffic, in the case of ICS the attacker has limited profiling ca-
pabilities as the attacker won’t have the ability to compare the
ICS network traffic with any ground truth. One of the main
challenges to perform this attack is to identify the critical
commands (e.g., turn off water supply) or sequence of plant
operations that is related to issuing of a critical command.
Then, identify the corresponding network traffic signature
associated with critical commands. Dropping such critical
commands will result in malfunctions (e.g., the water tank
overflows). In addition, identifying dependencies of a particu-
lar critical commands can disrupt (or delay) SWaT operations.
For example, PLC_a and PLC_b perform some computations
and that is crucial for PLC_b to send a command. Delaying
the communication between PLC_a and PLC_b will delay
the issuing of the command.

As we assume end to end network encryption, we learn the
correlation between various ICS operations and transitions in
process stages, and make an educated guess of when a critical
command is sent and from which component.

3.2 Attack Preparation

To address the above challenges we propose an attack in two
phases: (1) Offline profiling phase where we (the attacker) col-
lect network traffic of the victim ICS (SWaT) and we record
features such as source and destination IPs, replicate the target
ICS design (in simulation) and run the various components to
record the network traffic. (2) Active attack phase, where we
will drop or delay packets in the ICS network communication.

We assume that the attacker can compromise a network ac-
cess point close to the ICS hardware and collect the encrypted
network traffic. We also assume that the attacker can obtain a
specification of the ICS and knows the various process stages
involving the PLCs and can figure out which PLCs interact
with water tanks and which PLCs perform chemical processes.
In the offline profiling phase, our goal is to learn the various
system dependencies, timing behaviour of various intra-ICS
communications and identify the process stage transitions.
The following are the steps in the attack preparation phase:

1. We use Wireshark to collect and dissect SWaT network
traffic. We record the communication between each pair
of PLCs to get a fine grained understanding of the SWaT
activities. In the profiling phase, we also collect the water

level in the tanks to draw correlations between network
traffic and the SWaT process stages.

2. We use Wireshark to remove all the unwanted non-ICS
protocols (e.g., SSL). Packets tagged as TCP or UDP are
ICS communication related, and hence interesting to us.

3. We collect network traffic data for various duration (e.g.,
1h, 2h, 4h, 8h) of SWaT operations.

4. By observing the source and destinations, and the ac-
knowledgment sequence in wireshark we can identify
the sender and the receiver PLCs for a particular packet.

After we collect network traces for profiling, we plot the
packet length and the water level in the tank to find the corre-
lation between water level and communication between the
sender and receiver PLCs. We find that change in the packet
length has a cyclic nature e.g., the packets of certain fixed
sizes are sent between PLCa and PLCb periodically. This peri-
odic change in packet length shows the state transitions in the
SWaT system. For example, by observing the packets patterns
of PLC1, we can guess when stage 1 completes and stage 2
begins(Addressing C1).

We also noticed invariably large packets being sent in the
network. These packets are 2X larger than the other packets.
We identified that these packets represent service requests,
and dropping these large packets will result in service unavail-
ability (Addressing C2).

In order to address C3 related to finding correlations be-
tween encrypted network packets, we derive a cyclic pattern
detection algorithm (CDA). The CDA leverages the stage
transition in SWaT and identifies when to drop the packets in
order to delay the following stage.

3.3 Cyclic Pattern Detection Algorithm
In order to find the cyclic pattern in the modbus packet
lengths, we devise our own cyclic pattern detection algo-
rithm(Algorithm 1). We choose the TCP segment length as
the feature as it has close relationship with the Modbus packet
length. The packets with length 0 are ignored as they are
mainly ACK packets which don’t carry the information of
commands. And we define the pattern as the combinations
appearing at least twice.

Algorithm 1 shows how we get the cyclic pattern. Line 1
to Line 7 are used for initialization. We first define that the
length of the potential pattern p is two. A dictionary p_Dict is
used to store the patterns that are already been detected. It is
initialized to empty at the beginning. Line 8 to Line 25 is the
while loop where it will search for all the possible patterns in
the series. Line 9 first search that if the potential pattern p has
already appeared in the dictionary p_Dict, if so, Line 10 adds
this to the final pattern array p_Array. If not, Line 11 will
compare p with the next 2 elements in the time series. If they
matches, then Line 12 and Line 13 declare that a new pattern
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p is found and add this to p_Dict. If they still fail to match, p
will be expanded by 1 in Line 16. In other words, if the length
of previous p is two, then it’s three. And in Line 17 to Line
19, it continues to compare the p with the next 3 elements
in the time series. If they still doesn’t match, in Line 21, the
length of p and the elements to be compared will increase. At
last, this algorithm will stop when the whole array has been
explored.

Algorithm 1 Cyclic pattern detection algorithm

1: arrayo f Pac: array of the TCP segment length
2: p: potential pattern
3: p_Array: final pattern array
4: p_Dict: dictionary of detected pattern
5: idx: the number of elements to match
6: idx← 2
7: p← arrayo f Pac[0 : 1]
8: while arrayofPac is not fully checked do
9: if p is in p_Dict then

10: add p into p_Array
11: else if p matches next two elements in arrayo f Pac

then
12: add p into p_Array
13: add p into p_Dict
14: else
15: while idx elements are unchecked do
16: idx++
17: if p matches next idx elements in arrayo f Pac

then
18: add p into p_Array
19: add p into p_Dict
20: else
21: idx++
22: end if
23: end while
24: end if
25: end while

3.4 Packet Bursts Detection

For this we use timing as a feature. Network communication
in SWaT testbed occurs at variable frequency i.e., commu-
nications between some PLCs happen at microsecond level
granularity and others happen at second level granularity. To
measure the bursts, we record the packet transmission at sec-
ond level granularity for each pair of PLCs in the network. We
use wireshark to observe the network traffic and record com-
munication between the target pair of PLCs. We notice that a
lot of packets carrying acknowledgments, hence they do not
carry any payload. Thus, to improve our observation of burst
patterns we record only the TCP segment length (payload)
instead of entire packet size. We also record the water level

in the tanks to correlate how the burst patterns associate with
the water level and other SWaT activities (e.g., close value).

3.5 Active Attack
In this phase, we launch attacks based on the information
collected about the SWaT activities in the attack preparation
phase. Recall that in attack model we assume that the attacker
can compromise a network access point and the attacker can-
not see the packet contents as the SWaT system uses end to
end encryption. Considering the attacker’s capabilities we
launch the following two attacks: 1) Drop network packets -
As most modern ICS use software defined networking (SDN),
an attacker can configure a switch with a rule to drop certain
packets, e.g., packets of certain signature and time when to
drop packets. 2) Delay network packets - Similarly, the at-
tacker can define rules to delay certain packet, and sequence
of packets intermittently.

Ideally, the attacker will observe the cyclic pattern and the
burst patterns and start packet drop or delaying the packets
when such network traffic patterns are observed. The cyclic
pattern or the burst patterns suggest a change in the SWaT’s
process stages, and droping or delaying the network packets
that are crucial to a particular transition the SWaT process
stage will result in malfunctions. Moreover, the attacker will
aim to drop and delay packets in a stealthy manner in order
to avoid detection. For example, the attacker will drop the
packets for a certain duration and then allow the network to
recover.

4 Experiments

In this section, first, we present our experimental test bed,
followed by the evaluation methodology for our approach.

4.1 Experiment setup
To evaluate our attack experimentally, we implemented a re-
alistic setting. The implementation details of the main com-
ponents are described as follows.

Water Treatment Plant We choose the secure water treat-
ment plant(SWaT) as our target ICS as it is one the most
widely adopted ICS in prior academic work. We use a simula-
tion of the SWaT testbed called MiniCPS [8]. The simulation
is realistic and has the exact number of PLCs and other com-
ponents as the real testbed.

Network Simulation MiniCPS is build upon Mininet [4],
and it is extended with tool to simulate CPS components such
as the PLCs and the industrial protocols(Modbus/TCP). It
also provides the network topology for SWaT testbed. All
the PLCs are connected to the supervisory SCADA system
through a common switch in an Ethernet star topology.

Network Protocol We apply the built-in unencrypted Mod-
bus/TCP protocol in the network simulation. We could not
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Figure 2: Plot of Modbus packet lengths

configure secure Modbus protocol which is an end to end
encryption protocol. However, to make our analysis realistic
we do not look into the contents of the Modbus packets (em-
ulating observing encrypted network packets). The attacker
is only able to observe the size and timing information of the
network packages and not the contents.

Launch Attacks To simulate an attacker who can compro-
mise the network access point, we apply ovs-ofctl to drop
packets as other options such as iptables and tc qdisk
work better on Linux switches. In the SDN-based controller,
ovs-ofctl could be leveraged to drop packages according
to its ip address and packet length. As for packets delaying,
tc qdisk is used based on the specified delay time and ip
address.

4.2 Attack 1: Drop Largest Packets
Figure 2 shows a plot of the packet lengths of modbus packets
for 2 hours of SWaT operations. We find that most of the
packets are of length 66-72 bytes. As can be seen in the figure
(marked by the red bracket), a small number of packets are
invariably larger than the rest of the packets. We looked in
to the SWaT code to investigate why these small number of
packets are larger than the rest, and we found that PLCs make
a request periodically to discovery the running services. This
service request and service discovery transaction are carried
via largest packets we see in Figure 2.

In our first attack, we drop the large packets. To perform
this attack we write a simple ovs-ofctl script that monitors
the modbus packet lengths and drop packets which are larger
than 200 bytes. Note that all the service request and service
discovery related packets are larger than 200 bytes.

The attack is launched soon after the simulation starts. We
notice that the attack crashes PLC1 program (SWaT setup is
shown in Figure 1b). As rest of the PLCs operate indepen-
dently, they perform their respective tasks without any updates
from PLC1. After almost 10 minutes, we observe the water
level of the tank exceeds the threshold i.e. 800 cm.

This experiment shows that an attacker that can observe
the modbus packet lengths can launch an attack to drop the

largest packets to cause a tank overflow.

4.3 Attack 2: Cyclic Pattern Attack
To launch this attack, first we collect network traffic data and
perform offline profiling. Particularly, we observe the TCP
segment length and use Algorithm 1 to detect the cyclic pat-
tern in SWaT network traffic. In our experiment, we observe
two types of patterns namely Pattern 1 that has TCP segment
length [12,11] and Pattern 2 [12,12]. In each pattern, the value
of the elements represents the TCP segment length in each
network packet. For instance, Pattern 1 [12,11] suggests that
every time a packet with the TCP segment length 12 shows up,
it will be followed by a packet with the TCP segment length
11.

Figure 3: Detected cyclic pattern with Algorithm 1

Figure 3 shows a part of the patterns and the corresponding
TCP segment length during the offline profiling process. Value
= 1 in y-axis represents that it’s Pattern 1 and Value = 2 in y-
axis represents that it’s Pattern 2. The x-axis shows the index
of the patterns. We can observe from Figure 3 that Pattern 1
is the dominant pattern, the shift in Pattern 1 and Pattern 2 is
cyclic in nature, and Pattern 2 follows 5 instances of Pattern
1.

Our goal is to disrupt the cyclic nature of Pattern 1 and
Pattern 2. Therefore, the attack strategy is to drop packets for
3 minutes every time we observe the Pattern 2. We choose
to drop packets for 3 minutes because TCP will resend the
packets that are not received at the destination. Longer attack
time assures that the dropped packets won’t be received by
other PLCs. In the attack phase, we wait till the PLCs start to
communicate, and we monitor the length of the TCP segments.
We wait till Pattern 2 is observed in the network traffic, and
then we start dropping packets for 3 minutes.

The consequences of packet dropping are as follows:
PLC1 requests the value of the status of the valve from
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(a) Water level with different packets(without attack) (b) Water level with different packets(with attack)

Figure 4: Water level with different packets under different scenarios

other PLCs. The status of the valve is represented as
HMI_MV201_STATUS which can be set to 1 or 0 i.e., on
or off. . Note that we looked in to the code to identify this, an
attacker cannot see this information. Due to the attack, PLC1
fails to receive the valve status and therefore it can’t update
the current valve status of other PLCs. As a result, the process
stages of the water treatment is delayed. Figure 4a shows
the process stage transition under no attack scenario. As can
be seen the water level begins to increase after 40 packets.
Figure 4b shows the process stage transition after dropping
packets. When there is no attack, it takes 10 seconds for the
water level to change, which is about after 20 packets are sent.
However, after the cyclic pattern attack is launched, it takes
254 seconds for the water level to enter State 2, which is about
820 packets are sent. In other words, the attacker successfully
delays the time needed for stage transition of water level by
25 times.

Our results shows that an attacker can delay the regular
operations of SWaT by observing the cyclic pattern in packet
length and dropping packets for 3 minutes.

5 Discussions

In this section we discuss the limitations of our experiments,
followed by possibility of more observation from timing side
channels, and finally, we discuss how the attacker will know
whether the attack was successful.

5.1 Limitations of our Experiments
We have performed all our experiments on Modbus/TCP
which transmits network packets in plaintext, though we em-
ulate a realistic attack setting by not looking into the net-

work packets for launching the attacks. One of the concerns
with our experimental setup is the possibility of losing packet
length pattern observation when encryption is applied. Typi-
cally, TLS communication uses AES 128 (or larger size key)
for encrypting the payload. AES encryption will add padding
to the plaintext payload when encrypting. We performed anal-
ysis to identify what happens when the same network traffic
analysis is performed on secure Modbus protocol that may
use AES 128.

Our findings are as follows:

1. Modbus packets that are greater than 200 bytes in size
will become 871 bytes and 917 bytes when encrypted
with AES-CBC and AES-GCM modes respectively. AES
key length is 128 bits in both cases. Both CBC and GCM
are popular modes of implementing AES encryption in
high-level languages. These packets are crucial to per-
forming Attack-1, and we find that even with encryption
it is possible to observe the invariably large packets and
launch Attack 1 using our methodology.

2. TCP segment lengths of size 11 and size 12 bytes will
become 96 bytes after encryption with AES 128 if CBC
mode is used. This will result in losing the cyclic pattern
observations that is key to performing Attack 2 which
delays SWaT process stage transitions. However, if AES
128 with GCM mode is used, TCP segments of 11 and
12 bytes will become 161 and 165 bytes respectively.
Therefore, if GCM mode is used we can observe the
cyclic patterns in TCP segments and perform Attack-2
on secure Modbus protocol. We suspect that the differ-
ence in the length of encrypted packets when using CBC
and GCM is due to the way these two methods apply
padding (our guess, we have not investigated this).
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Figure 5: Plot of Packet burst observed at 1 second interval

We make similar observations for AES 256. When en-
crypted with CBC mode, TCP segments of 11 and 12 bytes
are padded to same size after encryption. However, when us-
ing AES encryption with GCM mode, the packet sizes vary
after encryption. Furthermore, this analysis shows that packet
length alone is not a very interesting features. To draw more
interesting correlations timing should be considered as the
feature.

5.2 Observation using Timing Channels

We analyzed what can be learned by observing timing chan-
nel, particularly we focus on burst patterns. Figure 5 shows
the packet burst pattern sampled at 1 second frequency. We
plot the TCP segments alone, this is to eliminate TCP ac-
knowledgment packets which do not carry any payload. We
can see a consistent cyclic nature in packet burst patterns. We
have not performed any attack leveraging this observation, but
from our experience in performing Attack 2 we imagine that
we can use the cyclic pattern detection algorithm and drop or
delay packets that will disrupt the SWaT process stages.

More interesting observations can be made by correlating
the burst patterns with the direction of the traffic and observ-
ing the water-level in the tank during the offline profiling
phase. We leave this for future work.

5.3 Limitations of Attack 1

We mentioned in Section 4 that Attack 1 successfully causes
the tank to overflow. However, as this attack crashes one of
the PLC programs, it is not stealthy in nature. There will be
significant latency from the time the attack is launched to the
time the tank overflows. If a platform operator notices one
of the PLCs stopped functioning and then restarts that PLC,
Attack 1 will not have any implication.

However, it is hard for the plant operators to diagnose and
locate the origin of the attack. Thus, an attacker can repeatedly
or intermittently perform Attack 1 that may eventually result
in the tank overflow.

5.4 Feedback to the Attacker

In our attack model we consider that the attacker can be an
external player and can target the ICS. It is important to iden-
tify how the attacker will know whether the packet drops or
delays satisfied their attack goals such as tank overflow or de-
laying ICS process stages. We find there are mainly two ways
for the attacker to get feedback: 1) The attacker can collect
a large amount of legitimate (no attack) ICS network traffic
and profile the patterns of legitimate traffic to identify the
traffic patterns of the responses (e.g., acknowledgments) cor-
responding to events such as process stage transitions, burst
patterns, etc. When the attack is launched and if the attack
is successful, the response traffic patterns will differ from
the response traffic of legitimate regular events. The varying
response traffic can be used as feedback. 2) The attacker may
gain access to live camera feedbacks of the distributed ICS
setup and observe the current actions of ICS after launching
the attacks.

6 Related Work

Attacks have been demonstrated against web application de-
spite encrypted network. Chen et al. [10] shows attacker can
infer the user sensitive data based on the web traffic pattern.
Their main idea is that modern web application make stateful
state-transitions, the authors profile victim’s internet activities
based on this observation and disclose sensitive information
about the victim. Heyes et al. [14] proposes k-fingerprinting, a
more powerful website fingerprinting technique with random
decision forests. Panchenkoet al. [21] maps network traces
to a class and proposes a classifier to get the feature of the
traffic. Schusteret al. [23] shows the encrypted video stream
can be identified be a remote attacker. The authors use packet
bursts as a key feature to fingerprint encrypted streams. Zhuo
et al. [27] focuses on user’s hyperlink transitions between
websites and applies Profile Hidden Markov Model(PHMM)
to determine a series of pages.

We use side channel information such as packet length,
patterns of packet size, burst patterns etc. which were used
in some of the prior works as well. However, in all the prior
work, the attacker has the ability to collect large amount of
internet traffic data as the web services are public, therefore,
the attacker can interact with the web services. Because the
attacker can collect large amount of data, they can use classi-
fication techniques to to compare victim’s data with ground
truth. In our case, the attacker cannot follow the same method-
ology, as ICS system programs are not public, therefore, the
attacker cannot obtain ground truth for network traffic pat-
terns. Therefore, our approach is to correlate various features
found in network traffic and use specific observation such as
cyclic patterns and burst patterns to make the best guess about
ICS activities.

All the prior work in website fingerprinting use side-
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channel leaks to disclose user’s internet activities. In contrast,
this work goes one step further and leverages side channel
information leaks to perform active attack on the ICS.

7 Conclusion and Future Work

In this project we investigated the possibility of using side
channel leaks to learn about activities (e.g., process stage tran-
sitions, service requests, burst patterns) of Industrial Control
Systems and leveraging the above information to perform ac-
tive attacks against the ICS. We find that despite of end to end
encryption and authentication in the ICS network, an adver-
sary can learn crucial ICS activities by profiling the side chan-
nel leaks such as packet length, payload length, packet burst
patterns, etc. We used secure water treatment plant (SWaT) as
a case study for our project, and we collected network traffic
and dissected the traffic to obtain the aforementioned side
channel leaks. Our main findings are as follows- 1) By drop-
ping a single packets it is possible to disrupt service requests
made by PLCs (Attack 1) which results in water tank overflow.
2) By dropping packets for 3 minutes it is possible to delay
the process stage transitions by 25 times. 3) More interesting
observations can be made using burst patterns and combining
the timing channels and packet length.

In future work, we plan to explore more side channels
such as inter-packet timing, direction of the traffic and devise
attacks based on the new observations. We could not get to
exploring the the attacker presented in Figure 1b that can gain
access to the ICS wifi and initiate communication between
nodes to flood the switches that may delay legitimate traffic.
We imagine the results of this attack will be similar to the
Attack 2 presented in Section 4.
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