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Abstract
For Autonomous Vehicles(AVs), sensor perception is
safety-critical. Failures in object detection can cause dis-
asters. Despite various prior works on adversarial 3D
physical attacks in AVs, all of them are simulating plac-
ing obstacles on the road with a synthesized scene. How-
ever, the rendering functions to generate the synthesized
scenes may not be able to ensure the physical consis-
tency between the obstacle and the background. The real-
world sensor perception is much more complicated. In
this project, we present the study of authenticity issues
of rendering-based synthesized scenes in AV systems. We
evaluate this by generating different synthesized scenes
and testing the performance of the neural network on
them. This allows us to quantify how realistic these scenes
are and understand the impact of physical consistency in
the scene on the effectiveness of generated adversarial ob-
jects.

We design a comprehensive test suite aiming at eval-
uating whether the method to integrate a 3D object in
the road background is realistic or not. We adopt empiri-
cal approaches that address four main design challenges:
various impact factors, physical environment consistency,
domain-specific metrics, and automated pipeline. We
evaluate the synthesized scene with our test suite in rep-
resentative open-source industry-grade AD system object
detection models with real-world driving scenarios. We
also choose a state-of-art adversarial 3D physical attack
for evaluation in malicious cases. Our results show that
most synthesized scenes are not realistic enough so the
object detection fails to detect the obstacles in it. Such
a phenomenon can reduce the effectiveness guarantee of
generated 3D adversarial attacks in the physical world.

1 Introduction

Autonomous Vehicles(AVs) can sense the surrounding envi-
ronment and move safely with little human input. They are

playing an important role in future transportation. Large com-
panies such as Google, Uber [6] are racing to develop AVs
and some high-level, such as level 4 self-driving cars have
already been deployed on the road. Level 4 is considered to
be fully autonomous driving. It can handle complex urban
driving situations without driver intervention. A fundamental
part of the autonomous driving system is perception. It uses
sensors [9] such as cameras, LiDARs, Radars, IMU(Inertial
Measurement Unit) and GPS to know the physical environ-
ment and react accordingly. Among them, perception sensors
including cameras and LiDARs provide the obstacle and traf-
fic sign information to AVs to avoid wrong decisions like
collisions and violating traffic rules, etc. Failures in percep-
tion can pose a threat to the safety of self-driving. In 2020, a
tesla car in autopilot mode collided with an overturned truck
as it failed to detect it. Therefore, multiple prior works have
been studying the security of these perception sensors.

Prior work has shown that AVs are vulnerable to attacks
on camera [13, 17, 33] or LiDAR sensors [10, 12, 28, 35].
Adversaries can change the texture of a 2D image [33](e.g.,
stop sign) or add well-designed adversarial patches [17] to
mislead the cameras. They can also inject laser [12] to spoof
the LiDAR sensors.

All of these studies, however, are limited to attacks with
synthesized background, i.e., integrating the adversarial ob-
ject with the road background through rendering functions
instead of realistic simulation [11, 26, 28, 33, 35]. To simulate
the scenario where a 3D vehicle is put on the road, This work
will synthesize the attacked-influenced sensor perception, for
example, the point clouds by LiDAR and images by a camera
with respective 3D rendering functions. These rendering tech-
niques provided by computer graphics can simulate the real
sensor functions but still lack comprehensive consideration
in sensing the environment due to the simplicity of its model.
By contrast, sensor perception in the physical world can inte-
grate more information such as light conditions, the realistic
texture of adversarial objects, and reasonable positions. Al-
though most recent works in adversarial attacks will evaluate
their methods in the physical world to show the effectiveness
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and feasibility, they use the synthesized method to generate
the malicious objects at a faster speed. The assumption that
the synthesized attack-influenced background is physically
consistent should be believed to hold in general [11] and thus
examining the effectiveness of this method is an urgent call.

This project presents a study on the evaluation of the re-
ality of synthesized backgrounds in AD perception systems
today. We test the above rendering-based simulation assump-
tion by evaluating the neural network performance on these
integrated sensor perception outputs used in the state-of-art
adversarial attack work. This allows us to gain a solid un-
derstanding of how much authenticity guarantees the use of
synthesized background can provide a realistic simulation
way to generate effective adversarial objects. Specifically, we
consider physical 3D objects as the attack vectors for real-life
feasibility and examine the performance of object detection
neural network models deployed in real AV systems on the
synthesized scenes.

Even though previous works have designed perception ren-
dering functions for cameras and LiDAR, we find that simply
feeding them with different objects and backgrounds won’t
meet our requirements. First, we need to identify the factors
in the synthesized scene that might influence the detection
accuracy of the neural network. For example, the object detec-
tion model may find it difficult to detect an object which is far
from away the sensor. Also, the color of the obstacle is sim-
ilar to the surrounding environment so that it’s hidden from
the neural network. Second, physical consistency between
the obstacle and the driving background should be maximum
guaranteed. No matter where we put the obstacle, it should
stand on the road instead of floating in the air or hitting the
ground. It should also follow the shadow caused by sunlight.
Third, to quantify the authenticity of the synthesized scene,
we need to come up with domain-specific metrics. The pre-
vious works use different metrics to measure whether their
adversarial obstacle achieves the goal and lacks a unified stan-
dard, which makes it difficult to provide fair and reasonable
metrics. Fourth, we need to develop an automated pipeline for
generating different synthesized scenes, evaluating the neural
network performance in the scene without attack as well as
with attack. Manually adjusting the parameters can take a
long time and it’s hard to do large-scale analysis.

Towards this end, we design an automatic and compre-
hensive synthesized scene test suite, which addresses the
challenges above and thus provides evaluation for the au-
thenticity of these rendering methods. Through preliminary
experiments, we choose different driving backgrounds, 3D
obstacle properties(including the color, shape, and texture),
and the interaction between the background and the obstacle,
e.g., the relative position, as the impact factors and serve them
as the parameters to adjust. The attackers assumed in the pre-
vious work can just place an object on the road as simulated in
the synthesized scene. To systematically generate a realistic
scene, we adopt camera imaging theory to adjust the height

of the object so that it’s standing on the road. Light condition
is considered to comply with the driving background. Also,
we start with a normal obstacle that can be obtained from
life easily, e.g., a common chair. Under these test settings, we
address design challenge 3 by considering the correctness of
the bounding box of a detected object, object class, and its
corresponding confidence score. We extract these by parsing
the output of the object detection neural network. Also, we
use these as building blocks to compute the overall scores for
the authenticity of the scene. In the end, we developed auto-
mated pipelines for selecting different factors and evaluating
the detection performance under benign and malicious cases.

We evaluate the scene synthesizing method in MSF-ADV
[11] and choose the image object detection, neural network
model, in Autoware.AI [3], which is representative of current
AD systems. We also choose the attack in MSF-ADV [11] to
generate adversarial 3D objects which can both fool the cam-
era and LiDAR object, detection models. We select 3 shapes
of chairs from McGill 3D Shape Benchmark [7] and evalu-
ate each on 5 real-world driving scenarios from the KITTI
dataset [21]. 60 different scenes are synthesized and evaluated.
Our results show that the benign obstacle in the synthesized
scene fails to be detected in all the test settings. We also find
that for the attack strategy generating the adversarial object,
if the benign object fails to be detected in the first place, it’s
also hard to generate effective adversarial obstacles. What’s
more, in this situation, it’s hard to provide a guarantee that
the generated adversarial object is effective in the physical
world.

In summary, this work makes the following contributions:

1. We study the authenticity of synthesized scenes in AD
perception systems. We successfully design a com-
prehensive test suite aiming at evaluating whether the
method of integrating a 3D object in the road background
is realistic or not.

2. We adopt empirical approaches that address four main
design challenges: various impact factors, physical envi-
ronment consistency, domain-specific metrics, and auto-
mated pipeline.

3. We evaluate the synthesized scene with our test suite in
representative open-source industry-grade AD system
object detection models with real-world driving scenar-
ios. We also choose a state-of-art adversarial 3D physical
attack for evaluation in malicious cases. Our results show
that most synthesized scenes are not realistic enough so
the object detection fails to detect the obstacles in it.
Such a phenomenon can reduce the effectiveness guar-
antee of generated 3D adversarial attacks in the physical
world.

While rendering the obstacle into the road background is
a general way of generating adversarial 3D obstacles, prior
works lack the realistic validation of the synthesized scene.
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In this project, we try to evaluate it by measuring the perfor-
mance of the neural network under different settings. We hope
that our findings can inspire more future related research to
validate their rendering process in AD perception when de-
signing the 3D adversarial obstacles. The GitHub repository
is publicly available at https://github.com/ElaineYao/
571p

2 Background

2.1 AV Perception System
In the state-of-art AV systems, perception plays an important
role in ensuring safety. The sensors are used to detect the
obstacles and measure the velocity or distance in real-time.
Typical systems in high-level, such as Level 4 [1] AVs adopt
both LiDAR and camera for visual perception. LiDAR [15]
can detect the ranges by shooting an object with a laser and
measure the distance by getting the time for the light to be
reflected by the receiver. Compared with RADAR, LiDAR
is much more accurate in resolution. Thus it’s used to recon-
struct exact 3D models of objects in autonomous systems.
However, it’s difficult to get texture-related information such
as the color [19]. On the other hand, camera images are good
at providing shape and texture information but lack depth and
distance information due to their 2D imaging. To compensate
for the weaknesses and utilize the strength of each sensor,
most AV systems will adopt Multi-Sensor Fusion(MSF) de-
sign, in which it will fuse the sensor reading from both LiDAR
and camera.

Figure 1 shows an overview of the perception module in a
common AV system [4]. 3D objects are first perceived by Li-
DAR and camera to generate point clouds(LiDAR) and frames
of images(camera). These raw sensor outputs will then go
through a pre-processing unit for the aggregated feature and
ROI(Region of Interest) extraction. Pre-processed features
will be fed into the LiDAR perception network and camera
perception network respectively to get the detection results.
The MSF algorithm will fuse the outputs of two perception
networks and give the final detection output.

In this project, we focus on the camera perception part. 3D
objects are sensed by the camera in the form of 2D images.
When a random obstacle is put in the middle of the road, a
synthesized image with the obstacle and road background
is generated. This image will then be fed into the object
detection neural network for results.

2.2 Synthesized Scene
To synthesize the obstacle with the road background, many
prior works [11] use Neural 3D Mesh Renderer(NMR) for
camera rendering [22]. NMR provides a way to generate a
2D image from the 3D world. It can transfer rendering gradi-
ent with consideration of texture, lighting, camera, and object

shapes. Given the camera pose, light condition, relative posi-
tion between the camera and the overall background, NMR
will provide the image output of this background with a cer-
tain camera setting.

Fig. 2 overviews the image synthesizing process in MSF-
ADV [11]. It first chooses the background from the target road
and the obstacle that it intends to put on the road, for example,
a brown chair. The 3D chair is presented in the form of the
point cloud, which is a set of data points in space. Camera
parameters and light conditions will be set to render this chair
into a 2D image. Then the relative location of the chair in
the background is set. Original pixels in the background will
be masked by the pixels in the 2D chair image to simulate
how a chair is put in the middle of the road. Before feeding
the synthesized scene into detection neural networks, some
pre-processing steps such as data transformation, utilizing the
Region of Interest(RoI) filter to clear unrelated input parts
and collecting aggregated features are performed. These pre-
processing processes can reduce the input size fed into the
neural network and greatly improve the inference speed.

In this project, we will use this as the target pipeline for gen-
erating synthesized scenes and will evaluate the authenticity
of the synthesized output.

2.3 Adversarial 3D Object Attacks

Prior works find that it’s easy to fool models with deceptive
data, which causes the malfunction in the neural network
model. This kind of adversarial attack is also studied in the
context of the physical world [16, 18, 32]. In the AV systems,
some prior works proposed physical adversarial attacks by
placing obstacles in the air or on the road [16, 18, 32]. Some
are targeting fooling the camera-based perception neural net-
work [16, 18, 32] while others are focusing on LiDAR-based
perception neural network [12,27]. Recently, considering that
MSF design is widely used in AD systems, MSF-ADV [11]
is proposed to attack both LiDAR and camera sensors with a
3D adversarial object.

MSF-ADV [11] treats the process of generating the adver-
sarial attacks as an optimization problem and Fig. 3 provides
an overview of the process to generate adversarial obstacles. It
first picks a normal 3D object and applies 3D transformations
including rotation, and position shifting to get different angles
of the object. This is to improve the robustness of the obstacle
in various kinds of environments. Then it will generate a point
cloud and image of this 3D object through ray-tracing [8] and
NMR [22] to simulate the perception output of LiDAR and
camera sensors. These two sensor outputs will be integrated
with the road background and pre-processed before being
sent to perspective perception neural networks and the MSF
algorithm. The attacker is assumed to be able to perturb the
shape and position of the 3D object. Also, the adversarial loss
function is designed to cause the malicious object not to be
detected by the MSF algorithm as well as keep the obstacle
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Figure 1: Perception module in AV systems

Figure 2: Synthesized scene through camera rendering

stealthy. After obtaining the generated malicious object, the
attacker can just 3D print it and place it on the road according
to the parameters in the optimization process.

In this project, we will use MSF-ADV [11] as the target ad-
versarial attack in the evaluation part. MSF-ADV [11] uses the
same method in the previous section to generate a synthesized
scene. Therefore, we want to see whether the authenticity of
the synthesized scene will influence the effectiveness of the
generated malicious object.

3 Attack Model and Design Challenges

3.1 Attack Goal and Threat Model

Attack goal: Fail both LiDAR and camera perception
neural networks in an AV system. In this project, we target
at evaluating the effectiveness of the MSF-ADV [11] attack
on the synthesized scene. The attack goal is straight-forward
for affecting the safety of autonomous driving: fail the AV
perception with LiDAR and camera sensors in the target AV,
so that it can’t detect the obstacle in front of it and collide
with it. This attack also assumes the AV system has a fail-safe
mechanism for an emergency brake. Even though the system
is equipped with an Automatic Emergency Brake(AEB), prior
works still show that the victim’s vehicle can be hit by the
cars behind if they fail to brake in time. Therefore, MSF-ADV

Figure 3: Pipeline for generating adversarial 3D object attacks
for both Lidar and Camera

is designed for real-world physical attacks with the current
industry-level AD systems.

AV systems that use more than 2 perception sensors will
usually be equipped with an MSF algorithm, which is to fuse
the information from all of the sensors and then make deci-
sions. MSF still has the chance to correct the wrong sensor
perception as long as there is at least one clean sensor source,
which is unattacked. Since this attack aims at defeating the
MSF-based AD perception, it must fail all the sensor percep-
tions for high attack effectiveness. Thus MSF needs to attack
all visual sensors (i.e., camera and LiDAR) at the same time.

Threat Model. MSF-ADV [11] is designed in a white-box
setting. It assumes that the attacker knows the MSF algorithm
and the corresponding neural network model for each sensor
perception in the target AV system. Many prior works that
study physical adversarial attacks towards sensor perception
in AV systems also have similar assumptions [18, 32]. This
assumption is valid as the attacker can reverse engineer the
purchased or rent AV perception module to get the algorithm
details. What’s more, lots of open-source industry-level AV
algorithms can also be the victim, e.g., Baidu Apollo [4],
Autoware.AI [3].

Since this attack is closely related to the road condition
and background, the attacker is also assumed to take camera
images and LiDAR data about the target road background
to generate the adversarial objects using MSF-ADV. After
getting the adversarial object in the target background, the
attacker can 3D print the object and place it at the calculated
place. To make the attack more powerful, the attacker can
even fill it with high-density material like granite to make it
heavier. As a result, when the car fails to detect this object
and collides with it, the damage might be more severe. Fig.
?? shows the benign object, i.e., a chair, and the malicious
chair generated by MSF-ADV [11]. We can notice that the
surface of the malicious chair is more glitchy and it’s easy for
the vehicle ignores the overall shape and crash into it.

3.2 Design Challenges

In the state-of-art work in generating adversarial physical
3D objects, they all use rendering functions to simulate the
sensor outputs and integrate the rendering output with the road
background to get the attack-influenced scenarios. Although
many works provide rendering pipelines, we find that simply
feeding them with different objects and backgrounds won’t
meet our requirements due to 4 unique challenges:

C1. Need to identify factors in the synthesized scene
which might influence the detection accuracy of the neu-
ral network. To evaluate the authenticity of the synthesized
scene, we need to find the factors that might make this scene
more realistic or the opposite. However, these factors are not
fully explored in prior work. When an adversarial object is
generated in a previous study, they only consider certain con-
ditions, e.g., specific background, and fixed relative position.
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For example, for 3d physical attacks, previous work predom-
inantly considers the relative position between the obstacle
and the target vehicle [35], the condition of target road back-
ground [11, 27]. Although there are many other factors such
as the aspect ratio of the background and light conditions,
they aren’t taken into consideration in previous works when
synthesizing the scene. One possible solution is to pick dif-
ferent obstacles and road backgrounds as many as possible.
However, this not only adds up the testing overhead and thus
decreases the testing efficiency, but also results in redundancy
in testing cases, which might influence the trust in the final
results. Thus, it is highly desired to identify some factors
that can represent the difference between various synthesized
scenes.

C2. Physical consistency between the obstacle and the
driving background should be maximum guaranteed. To
ensure the synthesized scene is generated realistically in the
first place, prior works are trying to select a physically re-
alizable object such as the drones holding a cardboard with
reflective surface [35] and printable traffic cone [11]. Since
these adversarial objects usually need a lot of optimization
iterations to be generated, it’s impractical to drive the vehicle
and put the obstacle in real-life to get real-time adversarial
outputs. Therefore, most prior work will synthesize the im-
pacts of adversarial obstacles from the physical sensor to
both image and point cloud outputs, as well as integrate them
into the road background. Despite the consideration of the
physical realizability of the object, we also need to model the
physical consistency when integrating the object and the back-
ground. For example, no matter where we put the obstacle, it
should stand on the road instead of floating in the air or even
hitting the ground. This means we can’t put the obstacle in
the background with a random position, instead, the physical
model between the obstacle size and relative position should
be established. It should also follow the shadow caused by
sunlight. For example, the road background is taken when
there is light from the east, thus the original object in the
background has the shadow facing west. When the obstacle
is put on the road, it’s also supposed to have a shadow in the
same direction. Or the neural network may fail to recognize
it because of the physical inconsistency.

C3. Domain-specific metrics for quantifying the au-
thenticity of the synthesized scene. In previous works de-
signing adversarial obstacles, they adopt the optimization-
based method, an optimization loss function is designed to
measure the effectiveness of the adversarial object, as well
as the stealthiness of the malicious obstacle. These loss func-
tions are designed based on the confidence value of the object
detection neural network, which reflects the probability that
the region contains an object [11]. Also, they use metrics to
measure the smoothness of the surface of the object. However,
these metrics are designed in a way to make the optimization
process more convenient, and faster. Our preliminary experi-
ments show that even after the optimization, it’s still possible

Figure 4: Intersection over Union(IoU)

for the neural network to detect the obstacle. Therefore, we
have to come up with new metrics to measure the performance
of the object detection neural network and the adversarial at-
tacks. Meanwhile, previous works use different metrics to
measure whether their adversarial obstacle achieves the goal
and lack a unified standard, which makes it difficult to provide
fair and reasonable metrics.

C4. Develop an automated pipeline for generating dif-
ferent synthesized scenes. After obtaining the factors that
influence the authenticity of the synthesized scenes, corre-
sponding value ranges should be determined. Usually, the
prior works only consider limited factors with certain value
ranges, the rendering pipeline they’re using may not be suit-
able for comprehensive testing. It’s also unrealistic to man-
ually choose the combinations among factors as this takes a
lot of effort. Automated pipelines generating different test-
ing scenarios should be developed. Meanwhile, since differ-
ent synthesized scenes are generated to measure its authen-
ticity through evaluating the neural network’s performance
in benign and malicious cases, this pipeline should also be
equipped with neural network model inference and automati-
cally compute the evaluation metrics along the way. Having
this automated pipeline can help us to do a large-scale analysis
on how realistic these synthesized scenes are.

4 Approach

In this project, we address the 4 aforementioned challenges
by designing an automatic and comprehensive test suite for
synthesized scenes, which provides ways for evaluating the
authenticity of the rendering methods used in MSF-ADV [11].

4.1 Overview
To address the challenges in Section 5.2, our test suite has the
following designs;

Different driving backgrounds, 3D obstacle properties,
and their interaction. To address C1, through our prelimi-
nary experiments, we choose driving backgrounds with dif-
ferent degrees of crowdedness, The 3D obstacle with various
colors, shapes, and textures, and the relative position between
the background and the obstacle. Fig. 5a is the overview of
the automated test suite pipeline for the synthesized scenes.

For road backgrounds, 5 different driving scenarios are cho-
sen according to the number of cars, the light condition, the
shape of the road, and the emptiness of the road. As we can
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(a) Overview of the automated test suite pipeline for benign synthesized
scenes.

(b) Overview of the automated test suite for adversarial synthesized
scenes.

Figure 5: Detection rate and confidence rate for benign objects

Figure 6: Benign chair and the malicious version

notice, some background has more than 13 cars while for oth-
ers there are only 2 5 cars. The number of cars will influence
the performance of the object detection neural network as it’s
easier to have occlusion between the obstacle with the cars
in the background when there are more cars. The result of
the neural network will be quite sensitive to the position of
the obstacle when the road is more crowded. These 5 back-
grounds are with different light conditions also. For some
backgrounds, the shadow of the trees takes up half part of the
road while in other backgrounds there is less shadow on the
road and even now shadows. The shadow area will affect the
object detection accuracy in a way that obstacles put in the
shadow are harder to be detected, especially when the color
of the obstacle is quite dark.

For 3D obstacle properties, we first choose different shapes
of objects of the same type. Considering that the chair is
quite common and easy to obtain in real life, we choose the
chair as our target benign obstacle and also use 3 different
shapes of the chair for generality. We also change the color
and the facing angle of the chair. The original color is wood
brown, however, this is easy not to be detected when it’s under
shadow or close to the soil. Therefore we also choose bright
colors, i.e., blue and pink for the chair. Also, we rotate the
chair for random angles as the angles in which the chair is
put will also affect the detection performance. A chair with
a full view will be detected easily while a chair with only a
side view is harder to be detected and recognized as the chair.

For the interaction between the obstacle and the back-
ground, we adjust the position of the chair on both the x-axis

and y-axis. For a chair that is close to the camera, it’s easier
to be detected while for a chair that is far from the camera,
it’s the opposite case. We implement the distance between
the chair and the camera by adjusting its position on the x-
axis. The position of the chair will affect the occlusion. For
example, if the chair is on the left side of the road and there
happens to be a car here. The chair may block the car and
prevent it to be detected. However, if the chair is on the right
side, there won’t be occlusion then.

The attacker can easily simulate this by choosing an object
with different shapes and colors and putting it on the road.

Adjust the size of the object along with its position. To
address C2, we adopt camera imaging theory to adjust the
height of the object so that it’s standing on the road. For ex-
ample, if the obstacle is far from the camera, simply cropping
the obstacle image and integrating it with a farther position
on the x-axis won’t help. It’s likely to hit the road as the size
of the obstacle should also shrink along with the increase of
the distance to the camera. In the same way, if the obstacle
is close to the camera, simply moving it closer on the x-axis
will likely cause the object to float in the air. The size of the
object should also increase when it’s closer to the camera. We
do experiments on our backgrounds and take the following
equation to model the relationship between the obstacle size
and the distance between it and the camera.

z =−1.73+ r/2 (1)

Here z represents the distance between the obstacle and the
camera in the unit of meters. r represents the scaling factor of
the size of the obstacle. Moving the obstacle away or closer
to the camera with the corresponding scaling factor in the
equation ensures that the obstacle is standing on the ground
without floating or hitting the ground.

On the other hand, we also consider the light condition to
comply with the driving background. When there is a shadow
in the background which is caused by the sunlight from a
certain direction, an obstacle putting on the road should also
have a similar shadow to ensure physical consistency. To pro-
duce a similar light condition, we consider the direction and
intensity of the light when we’re using the camera rendering
function to get the 2D image. Also, we start with normal ob-
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(a) Detection rate for benign objects (b) Confidence rate for benign objects

Figure 7: Detection rate and confidence rate for benign objects

stacles which can be obtained from life easily, e.g., a common
chair. This is a fair assumption as getting the original obstacle
shouldn’t be difficult for the attacker.

Detection rate and Confidence rate To address C3, we
parse the output of object detection neural networks, i.e.,
detected bounding box, object label, and confidence scores.
Then we introduce two metrics, i.e., detection rate and confi-
dence rate to measure the performance of the neural networks.
Specifically, Fig. 10 shows the overview of the algorithm
to get the total confidence scores and the correctly detected
objects. Here we choose YOLOv3 as our target neural net-
work as it’s used in Autoware.AI [3] for object detection. The
output of YOLOv3 includes the bounding box, label, and
confidence score. The bounding box is used to describe the
position of the detected object. The most important part of
object detection is detecting the obstacle in the right place.
Here we use the Intersection over Union(IoU) to describe
the extent of overlap of two objects. Fig. 4 shows the equa-
tion to calculate IoU. We divide the area of overlap of two
objects, i.e., the ground truth bounding box and the detected
bounding box, with the area of the union of two objects. If the
calculated IoU is close to 1, it means the detected bounding
box almost overlaps with the ground truth and the detection
position for the obstacle is correct. We set a threshold α to
compare with the calculated IoU to decide if the detection
position is correct.

Then the label of the obstacle is chosen and compared with
the ground truth label. If they match, it means that the detected
obstacle is correctly classified. And we think this obstacle is
detected correctly. Therefore we record the confidence score
of this detection result and count this as a correctly detected
object.

In the end, we use the equation in Fig. 8 and Fig. 9 to
calculate the detection rate and confidence rate. The detection
rate is used to measure the percentage of correctly detected
objects and the confidence rate is used to measure the aver-
age confidence scores per object. By comparing these two
metrics in synthesized scenes with different settings, we can

Figure 8: Detection rate.

evaluate the performance of the neural network and therefore
the authenticity of these scenes.

Automated pipeline for test suites To address C4, we
need to design automated pipelines for the whole testing
process to improve efficiency. In Fig. 5a, we first randomly
choose one kind of chair as our target obstacle. Then we
randomly choose the color between wood brown, blue and
pink. The colored chair will be rotated at a random angle
in [0°, 180°]. Meanwhile, a road background will be picked
randomly to serve as the driving scenario. We also shift the
position of the chair on both the x-axis and the y-axis. The
shifting range in the x-axis is set to be in [4m, 8.5m] and the
shifting range in the y-axis is set to be in [-8m, 8m]. While
we’re shifting the obstacle, we also scale the size of the object
according to the camera imaging equation to ensure physical
consistency. Then we render this obstacle with a certain back-
ground to get the 2D images. This camera image is sent to
the object detection neural network to get the detection rate
and confidence rate of the final outputs. These are used to
measure the authenticity of the benign synthesized image.

In Fig. 5b, we generate the adversarial obstacle using MSF-
ADV [11]. Then we render the adversarial object with the
camera rendering function and integrate it with the back-
ground. The generated 2D image is fed into the camera object
detection neural network to get the detection rate and con-
fidence rate of the adversarial synthesized scene. This is to
measure the effectiveness of generated adversarial obstacles
in the road background.

7



Figure 9: Confidence rate.

Figure 10: Algorithm for calculating confidence scores and
detected objects.

5 Experiments

5.1 Evaluation Methodology and Setup

Object detection model selection In our evaluation, we
target the object detection model provided in open-source
industry-level AV systems to make our results more practical
and realistic. Specifically, we choose the YOLOv3 [25] from
the full-stack AV system, i.e., Autoware.AI [3] because Au-
toware.AI is applied in USDOT [5] and therefore the object
detection neural network they’re using is representative. Be-
sides, Autoware.AI has been installed in real physical driving
vehicles and provided service on public roads [2]. This makes
this test also practical in the real physical world. YOLOv3
also has a good performance as a real-time object detection
algorithm and is widely used in the perception of AV sys-
tem [3].

Synthesizing method selection Considering that there are
many implementations for synthesizing the rendered obstacle
with the road background, we experiment with the synthesiz-
ing pipeline used in MSF-ADV [11]. MSF-ADV [11] aims
at designing adversarial obstacles which can fail both the
camera and the LiDAR neural network detection. Since it
takes thousands of optimization rounds to generate the ad-
versarial objects, driving the physical vehicle on the road to
get the camera and LiDAR sensor outputs with the updated
obstacle in each optimization iteration is impractical. As a
result, they design a way to synthesize the attack-influenced
physical world digitally to get the resulted camera images and
LiDAR point clouds. The adversarial obstacle generated with
the digitally synthesized scene is also tested in the physical
world and proved to be effective. This shows that their syn-

thesizing method might be realistic enough to simulate the
physical world effect. Thus in our evaluation, we target the
synthesizing method designed in MSF-ADV [11].

Adversarial attack selection Many prior works propose
the physical adversarial attacks in AV systems, such as putting
the drones flying in front of the target vehicle [35], placing
an adversarial object on the rooftop of the target vehicle to
hide this vehicle from the LiDAR detector [28]. However,
due to the MSF design in current AV systems, which can
recover the correct sensor reading as long as there is at least
one sensor available, these adversarial attacks will fail in this
setting. Thus, MSF-ADV [11] proposes a way to attack all
fusion sensor sources at the same time. This is one of the
most powerful attacks in perception modules in AV. Thus, in
our evaluation, we will generate adversarial objects with the
optimization-based method proposed by MSF-ADV [11].

3D object selection
Due to the practical object types for the camera models,

we experiment with 3 different shapes of chairs from McGill
3D Shape Benchmark [7]: (1) a chair of size 0.6m * 0.5m *
1.5m, (2) a chair of size 0.4m * 0.7m *1.3m, and (3) a chair
of size 0.7m * 0.6m * 1.1m. These chairs are represented
in the form of 3D point cloud mesh. Because the number
of points is quite huge and brings a large overhead to the
camera rendering process, we decrease the number of vertex
and faces in the original 3D meshes with MeshLab [14]. It
supports face reduction with high-quality preservation. We
also scale the size of the chair according to the space in the
background with MeshLab so it’s more realizable in real life.

Driving scenario selection For each chair with a certain
shape, we select 5 real-world driving scenarios from the
KITTI dataset [11]. Each driving scenario consists of the
camera image, LiDAR point cloud, and the calibration ma-
trix for each frame of sensor readings. KITTI offers various
driving scenarios including different vehicles and roads with
various properties.

5.2 Authenticity of Benign Synthesized Scenes

In this section, we evaluate the authenticity of the synthesized
scene by measuring the performance of the object detection
neural network.

Evaluation metrics. Given a randomly generated obsta-
cle, driving background, and the relative position, we feed
the rendered obstacle and the synthesized driving scene into
the YOLOv3 model and test whether the cars in the original
background and the newly added obstacle can be detected
by YOLOv3. We use detection rate and confidence rate as
metrics to measure the performance of YOLOv3 in the syn-
thesized scene. Under this criterion, YOLOv3 should first
successfully detect the obstacle in the blank background and
the cars in the original driving background. In other words,
if YOLOv3 detects the original obstacle and cars in the back-
ground separately in the first place, it means the obstacle and
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(a) Delta detection rate (b) Delta confidence rate

Figure 11: Delta detection rate and confidence rate between benign objects and adversarial ones.

cars are benign to YOLOv3. After synthesizing the obstacle
with the driving background, a realistic scene should still al-
low YOLOv3 to detect the chair and equal amount of cars as
it does in separate cases. A benign chair is the one without
attack and thus should certainly be detected no matter what
the background is.

Results.
Finding 1: The benign obstacle (i.e. chair) fails to be de-

tected in all the tested settings. It means that when integrating
the obstacle in the background, it’s quite hard for the YOLOv3
model to detect it. This might be reasonable because per-
haps the training dataset, didn’t cover a similar image and
the model hasn’t seen a chair placed on the road. Therefore,
if we want to simulate putting any obstacle on the road, we
may have to choose the obstacle, background, and model care-
fully. As a result, the synthesized scene is not realistic enough
especially for the chair, because the benign chair is never
detected. Finding 2: The benign obstacle may also lead to
the performance decline in neural networks(e.g., occlusion).
Fig. 7a and Fig. 7b are the histograms for detection rate and
confidence rate in benign objects. We draw this with more
than 60 test settings. In Fig. 7a, for most cases, the detection
rate is close to 1, which means it correctly detects all the cars
in the background. However, there are several cases where
YOLOv3 fails to detect all the cars. This is because the chair
might block the car and as the result, the car is invisible to the
neural network due to the occlusion.

5.3 Effectiveness of Adversarial Attacks on
Malicious Scenes

Evaluation metrics. Given an obstacle, we generate the ad-
versarial version with MSF-ADV [11] method, feed the ren-
dered obstacle and the synthesized driving scene into the
YOLOv3 model, and test whether the cars and the adversarial
obstacle can be detected by YOLOv3. We use detection rate
and confidence rate as metrics to measure the performance
of YOLOv3 in the adversarial synthesized scene. Under this

criterion, YOLOv3 should first successfully detect the cars in
the synthesized background but fail to detect the adversarial
obstacle. This is to measure the effectiveness of adversarial
attacks in the synthesized scene.

Results.
Finding 1: When the NN fails to detect the benign obstacle

(i.e. chair), it’s also hard to generate effective adversarial
obstacles Fig. 11a and Fig. 11b are the histogram for delta
detection rate and confidence rate. The delta value is calcu-
lated by subtracting the result in benign cases from the result
in adversarial cases. If the delta value is close to 0, it means
that the adversarial object doesn’t have much influence on
the detection accuracy. In Fig. 11a, we find for a large pro-
portion of settings, the delta value is close to 0. We also find
cases where the delta value is negative. which means that
the adversarial object even improves the detection accuracy.
In this case, there are more than 13 cars in the background
chosen and they occlude each other a little bit. As the result,
the detection accuracy might be very sensitive to the position
and size of the chair. For the adversarial object, it may by
accident improve the detection accuracy. The same goes with
Fig. 11b, in which the negative delta value only appears when
the background has countless cars.

6 Related Work

Adversarial camera and LiDAR-based attacks AVs At-
tacks in perception sensors can be divided into two categories,
camera-based attack, and object-based attack. The camera-
based attack methods [13, 17, 33] propose to hide the objects
to be detected by adding adversarial patches. The attacker
can apply different interference methods to enhance the ro-
bustness so that the objects won’t be detected from varying
observation angles and distances. This camera-based attack
aims to change the texture of the object [11]. The Lidar-based
attack methods [10, 12, 28, 35] propose to spoof the LiDAR
with injecting laser [12], finding vulnerable LiDAR detection
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locations [35] or changing the shape of the 3D objects [10].
This kind of attack can fool the LiDAR object detection mech-
anism, but it’s hard to spoof cameras as it aims to change
the shapes instead of the texture of the object [11]. In these
works, to mislead the neural network, some outstanding pat-
terns are generated to cause the model to have a tendency
towards specific outputs.

Defense towards the adversarial camera and LiDAR-
based attacks in AVs Defenses against these adversarial
perception attacks also fall into two types. One kind of de-
fense [29, 31, 34] aims to detect and recover the corrupted
objects before they’re sent to the detection algorithm. The
authors reconstruct the objects with implicit functions [29] or
denoising and upsampling [34]. Although these methods can
achieve a good recovering rate, they focus on either camera-
based attacks or object-based attack. The other kind of de-
fense aims to fuse multiple sensors [20, 23, 24, 30] to avoid
the spoofed sensor guiding the detection output. These Multi-
ple Sensor Fusion (MSF) algorithms integrate the image and
LiDAR feature map strategically to rely on the unattacked
sensors.
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