
SwarmFuzz: Discovering GPS Spoofing Attacks in
Drone Swarms

Yingao (Elaine) Yao
The University of British Columbia

elainey@ece.ubc.ca

Pritam Dash
The University of British Columbia

pdash@ece.ubc.ca

Karthik Pattabiraman
The University of British Columbia

karthikp@ece.ubc.ca

Abstract—Swarm robotics, particularly drone swarms, are
used in various safety-critical tasks. While a lot of attention has
been given to improving swarm control algorithms for improved
intelligence, the security implications of various design choices in
swarm control algorithms have not been studied. We highlight
how an attacker can exploit the vulnerabilities in swarm control
algorithms to disrupt drone swarms. Specifically, we show that
the attacker can target a swarm member (target drone) through
GPS spoofing attacks, and indirectly cause other swarm members
(victim drones) to veer from their course, resulting in a collision
with an obstacle. We call these Swarm Propagation Vulnerabilities.

In this paper, we introduce SwarmFuzz, a fuzzing framework to
capture the attacker’s ability, and efficiently find such vulnerabili-
ties in swarm control algorithms. SwarmFuzz uses a combination
of graph theory and gradient-guided optimization to find the
potential attack parameters. Our evaluation on a popular swarm
control algorithm shows that SwarmFuzz achieves an average
success rate of 48.8% in finding vulnerabilities, and compared
to random fuzzing, has a 10x higher success rate, and 3x lower
runtime. We also find that swarms of a larger size are more
vulnerable to this attack type, for a given spoofing distance.

Index Terms—Drone Swarm, GPS Spoofing, Resilience

I. INTRODUCTION

Drone swarms are a type of distributed cyber-physical sys-

tem inspired by swarm intelligence [1], consisting of multiple

drones that can communicate with each other. They carry out

large-scale missions that cannot be performed by a single

drone, e.g., logistics, surveillance, search and rescue [2]–[4].

Unfortunately, drone swarms are vulnerable to threats such

as logic flaws [5] in swarm control algorithms and masquerade

attacks [6]. However, attacks exploiting such threats incur high

costs (e.g., introducing an external drone [5], sending spurious

messages to the swarm [6]), and can be thwarted using tech-

niques such as intruder detection [7] and drone authentication

[8]. In contrast, physical attacks that feed the drone with

erroneous sensor measurements via physical channels (e.g.,

GPS, accelerator, gyroscope) require relatively little effort, and

can lead to drones crashing [9]–[13].

GPS attacks [9], [10], which send malicious GPS signals to

victim drones, are examples of physical attacks. GPS attacks

have been shown in various systems such as self-driving

cars, drones, and trucks [14]–[16]. For example, during a

drone show in Hong Kong, 46 drones crashed due to GPS

jamming [17]. GPS spoofing, in which the GPS value is

falsified, can be more debilitating than GPS jamming as it uses

more subtle signals, and thus is more difficult to detect [18].

In this paper, we first demonstrate that GPS spoofing attacks

can disrupt drone swarms by exploiting vulnerabilities in

swarm control algorithms - we call these Swarm Propagation

Vulnerabilities (SPVs). Specifically, the attacker launches GPS

spoofing in a swarm member (target drone), causing the

target drone to deviate from its correct trajectory, but avoiding

collision with other swarm members (for attack stealthiness).

The deviation changes the inter-distance between the target

drone and other members of the swarm (victim drones). This,

in turn, leads to incorrect control commands generated by the

swarm control algorithm. These incorrect commands cause the

victim drones to veer off course, resulting in collisions.

Note that the target drone in the attack is not the one

involved in the collision, and hence it is difficult to identify it

as the “bad apple”. Also, current defenses [19], [20] for GPS

spoofing attacks in a single drone often ignore small GPS

spoofing deviations (e.g., 0 − 10m). Even if such defenses

are deployed in all swarm members, they will fail to detect

this type of attack. This allows the attacker to attack the other

swarm members without being detected, causing collisions,

thereby reducing the mission efficiency and leading to poten-

tially catastrophic outcomes such as crashes.

The main cause of SPVs are the design choices of swarm

control algorithms. To generate the control commands (e.g.,

heading directions), the swarm control algorithm has to bal-

ance conflicting goals with different priorities. For example,

for a swarm control algorithm to maintain the formation in

the swarm, it may give higher weights to goals involving

interactions among swarm members than those that avoid

the obstacle. While most swarm control algorithms are tuned

to balance these goals under normal conditions and avoid

collisions, they are unable to do so when the attacker can

manipulate swarm members’ perceived locations, such as

through GPS spoofing attacks, at strategic times. This can

result in collisions between the swarm members and obstacles.

To help defenders evaluate the resilience of the drone

swarm mission against SPVs, we design a fuzzing technique

that can capture the attackers’ capabilities, map them to the

drone swarm, and discover SPVs before running missions.

Fuzzing is a testing technique that has been widely used to

find vulnerabilities in real-world applications [5], [21]–[25].

However, directly applying previous fuzzing approaches for

finding SPVs in drone swarms is challenging for the following

two reasons. (1) The input spaces are large for long missions

366

2023 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

2158-3927/23/$31.00 ©2023 IEEE
DOI 10.1109/DSN58367.2023.00043

and large drone swarms, making it difficult to efficiently find

the target-victim drone pairs that are vulnerable to SPVs.

(2) They typically target failures due to the exploitation of

memory vulnerabilities, while we target failures that cause

victim drones to crash into obstacles via GPS spoofing attacks.

We make the following two observations about the attacker

who wants to successfully exploit SPVs in drone swarms.

(1) To maximize the attack impact with minimal effort, the

attacker should find the most influential drone as the target

drone and the drone closest to the obstacle as the victim drone.

(2) To efficiently cause collisions, the attacker should find GPS

spoofing parameters that can minimize the distance between

the victim drone and the obstacle. We find that this is a convex

optimization problem, which can be solved efficiently.

Motivated by the above observations, we propose SwarmFuzz,

a novel fuzzing technique to efficiently find SPVs in drone

swarms. SwarmFuzz has two innovations. First, we develop an

abstraction called the Swarm Vulnerability Graph (SVG), and

utilize graph centrality analysis [26] to measure the malicious

influence of each target-drone pair. SwarmFuzz leverages graph

centrality to decide the order of the target-victim drone pairs

for fuzzing, so that the most influential drone pairs are prior-

itized to discover the vulnerabilities more efficiently. Second,

SwarmFuzz employs gradient descent, which is known to be

efficient for convex optimization problems, to search for the

other GPS spoofing parameters that will cause collisions.

We apply SwarmFuzz1 to a popular swarm control algo-

rithm [27] in the SwarmLab [28] simulator. We evaluate

SwarmFuzz in different swarm configurations by varying the

swarm size and the GPS spoofing distance. SwarmFuzz helps

swarm designers to evaluate the resilience of the swarm

mission beforehand. If the swarm mission is found to be

vulnerable to SPVs, the designers can take actions (e.g., tuning

the parameters in the control algorithm) to make it secure.

To the best of our knowledge, we are the first to demonstrate
the presence of SPVs in drone swarm control algorithms, and
propose a technique to systematically and efficiently find such
vulnerabilities. We make the following contributions.

• Demonstrate attacks that exploit SPVs to indirectly cause

disruptions (e.g., collisions) in drone swarms.

• Propose the SVG abstraction, and utilize centrality analy-

sis to find drone pairs that are likely to result in collisions.

• Design SwarmFuzz, a fuzzer that uses SVG and gradient-

guided optimization to efficiently evaluate the resilience

of swarm missions by finding SPVs that cause collisions.

• Evaluate SwarmFuzz on a popular swarm control algo-

rithm. We find that (1) SwarmFuzz can achieve an average

success rate of 48.8% in finding SPVs across swarm

configurations; (2) SwarmFuzz has a higher success rate

for missions with a larger swarm size or with longer

GPS spoofing distance. Further, for missions in which the

swarm passes close to the obstacle, even a small spoofing

distance causes collisions. Finally, both the SVG and

gradient-guided optimization are necessary for SwarmFuzz.

1Available at: https://github.com/DependableSystemsLab/SwarmFuzz

II. BACKGROUND AND THREAT MODEL

Drone swarms. Swarm control algorithms can be either

distributed or centralized [1]. Centralized algorithms are less

resilient as they have a single point of failure. Therefore, we

focus on distributed swarm control algorithms in this paper.

Distributed drone swarms follow four steps in a periodic

loop (Fig. 1): (1) each swarm member reads sensor data (e.g.,

GPS, IMU) to get its current physical states (e.g., location,

velocity); (2) swarm members exchange physical states among

themselves by sending messages through the communication

system; (3) the swarm control algorithm running in each drone

uses the physical states of other swarm members to compute

the state difference (e.g., inter-distance, relative velocity); (4)

each drone derives the control commands by itself independent

of other drones based on the state difference and goals.

Specifically, to coordinate the swarm members, the swarm

control algorithm has to adhere to the following three high-

level goals: (1) mission-driven, to ensure the drone swarm

is moving towards the destination; (2) collision-free, to en-

sure no collisions by maintaining minimum distance among

drones/obstacles; (3) cohesive formation, to preserve the

swarm formation by avoiding long distance among drones.

As a result, the final control command generated in a drone

mainly consists of three sub-commands, each for a specific

goal. One key component in the swarm control algorithm is

to balance these potentially conflicting goals through careful

tuning. For example, when an obstacle is in the path of a drone

to the destination, the swarm control algorithm needs to assign

higher weights to goals (1) and (2) to ensure that the drone

moves towards the destination while avoiding the obstacle.

Fig. 1: Workflow of distributed drone swarm systems.

GPS Spoofing Attacks. The Global Position System (GPS)

is widely used in Robotic Vehicles (RVs) for outdoor local-

ization. The GPS receiver calculates the position based on

the signal received from the GPS satellites. Civilian GPS sys-

tems lack signal authentication and encryption, and hence are

vulnerable to GPS spoofing [10]. RV missions like delivery,

search, and rescue [2]–[4] are vulnerable to GPS spoofing as

they depend on the location information. We focus on missions

in which the swarm goes from one point to another.

In a GPS spoofing attack, the attacker transmits fabricated

GPS signals with stronger power than the original GPS signal,

so that the victim GPS receiver locks on to the attacker’s

signal. The attacker controls the victim’s perceived position

by manipulating the GPS messages. GPS spoofing has been

shown in laboratory [9] and real life settings [14], [16], [17].

367

Prior work has demonstrated how to infer a drone’s infor-

mation to perform GPS spoofing attacks on it [9], [10], [29]–

[31]. While many defenses against GPS attacks have been

proposed for a single drone [19], [20], [32], most of them

ignore small GPS spoofing distances (e.g, 0− 10m) as those

are indistinguishable from the standard GPS offset [33], This is

often sufficient to ensure the safety of a single drone. However,

in a drone swarm, since each swarm member acts based on

its neighbors’ physical states, even a slight location deviation

in one drone’s location may influence the other members, and

cause disruptions (e.g., collisions) in the drone swarm.

Threat Model. We assume the attacker can perform GPS

spoofing attacks in only one member in the drone swarm.

This requires much less attack effort than spoofing the GPS

for multiple drones in the swarm, and also makes the attack

stealthier. The attacker’s goal is to cause a swarm member

to collide with the on-path obstacle. We do not consider col-

lisions between the swarm members themselves. We assume

the attacker knows the obstacle’s GPS coordinates. She can

achieve this by either 1) placing the obstacle by herself, or 2)

choosing an existing obstacle in the drone swarm’s trajectory,

and looking up its GPS location. We also assume the attacker

knows the swarm control algorithm being used, but she does

not know the high-level goals explained in Section III as

SwarmFuzz automatically finds the vulnerability. Further, the

attacker does not have the capability to intercept or modify

the messages exchanged among the swarm members as the

messages may be encrypted [34]. Finally, we assume that the

attacker cannot introduce any external drones into the swarm.

III. MOTIVATING EXAMPLE AND CHALLENGES

We first present an example drone swarm running a highly-

cited swarm control algorithm - Vicsek algorithm [27], to show

how SPVs can be exploited (details in Section V-A). We then

present the design challenges in systematically finding SPVs.

A. Motivating example

Swarm Setup. We emulate a 5-drone swarm in the Swarm-

lab [28] simulator for a delivery mission, as shown in Fig. 2-

(a). It aims to reach a pre-defined destination (i.e., the flag)

while avoiding the on-path obstacle (i.e., the purple triangle).

For example, in Fig. 2-(a), the obstacle blocks drone 5’s way

to the destination. Therefore, the swarm control algorithm

attempts to make drone 5 avoid the obstacle from the right.

Goals. As mentioned in Section II, the swarm control

algorithm mainly follows three goals to generate the appropri-

ate control commands, i.e., (1) mission-driven, (2) collision-

avoidance, and (3) cohesive formation. The algorithm gener-

ates different sub-velocities for each swarm member, based on

the above goals. Fig. 2-(b) shows the mapping between each

goal and the corresponding sub-velocity generated.

For goal (1), each drone has a sub-velocity for moving

towards the destination (i.e., blue arrows). For goal (2), with

the short distance between drone 1 and drone 2, repulsive sub-

velocities (i.e., orange arrows) are generated to avoid collisions

between them. For goal (3), with the relatively long distance

between drone 1 and drone 5, attractive sub-velocities (i.e.,

green arrows) are generated between the drones to maintain the

formation. These sub-velocities may conflict with each other.

Exploiting SPVs. The attacker first launches GPS spoofing

and causes the target drone to perceive a wrong location, which

it communicates to the swarm. This deviation changes the

inter-distance between the target drone and the victim drone,

causing the swarm control algorithm to generate incorrect con-

trol commands. These incorrect commands cause the victim

to deviate from the course, potentially resulting in collisions.

For example, in Fig. 2-(c), drone 4 (target drone) is under

the GPS spoofing attack and thus deviates to the right. This

deviation increases the inter-distance between drone 4 and

drone 5 (victim drone), making it difficult for the drone swarm

to maintain the formation. Hence, according to goal (3) in

Section II, attractive sub-velocities (i.e., green arrows) between

drone 4 and drone 5 are generated. Note that originally, drone

5 avoids the obstacle from the right. However, with this new

sub-velocity, the overall velocity (i.e., red arrow) for drone 5

points towards the obstacle, thereby leading to a collision.

According to goal (2) in Section II, drone 5 also has a

sub-velocity for avoiding the obstacle. However, since the

sub-velocities generated by other goals are bigger than the

sub-velocity to avoid the obstacle, drone 5 flies towards the

obstacle and collides with it, thereby violating the swarm’s

safety constraints. Thus, the above attack was successful.

We found that the above attack succeeds in different swarm

missions with different GPS spoofing distances (i.e., 5m and

10m), indicating that this particular swarm configuration is

highly susceptible to SPVs. However, it is tedious to perform

this evaluation manually for different swarm configurations.

B. Design Challenges

For defenders to evaluate the resilience of swarm configu-

rations, it is important to develop an automated approach to

systematically and efficiently find SPVs in drone swarms. This

leads to two unique challenges, as follows.

C1: Finding Target-Victim Pairs. To exploit the SPVs and

launch a stealthy attack, appropriate target-victim drone pairs

need to be chosen strategically. This is because in a large drone

swarm, the number of possible combinations of target-victim

drone pairs is huge, which leads to a large input space.

C2: Choosing Spoofing Parameters. Given the spoofing

deviation, performing GPS spoofing attacks involves two key

parameters, i.e., spoofing direction and spoofing time. Spoof-

ing direction refers to the direction the target drone deviates

under GPS spoofing (e.g., right, left), while spoofing time

refers to the duration of time that the GPS spoofing attack lasts.

The wrong choice of the spoofing parameters (i.e., direction

and time) in the target drone will cause the victim drone to

avoid the collision, thereby defeating the point of the attack.

IV. METHODOLOGY

Fig. 3 presents the overview of SwarmFuzz. SwarmFuzz only

takes as inputs (1) the swarm control algorithm, (2) the mission

parameters (including the swarm size and the location of the

368

Fig. 2: Motivating example for SPVs in drone swarms.

obstacle), and (3) the GPS spoofing deviation. It performs the

following three steps. (1) It runs an initial test without any

attack. If this test mission is successful (i.e., no collisions),

it records mission information to construct the Swarm Vul-
nerability Graph (SVG). (2) It performs centrality analysis on

the SVG to analyze the influence of each drone with a certain

spoofing direction, and uses this to decide the order in which

target-victim drone pairs are selected for fuzzing (C1). (3) For

a certain target-victim drone pair with the spoofing direction,

it searches for the spoofing parameters (i.e., start time and

duration) that minimize the distance between the victim drone

and the obstacle with gradient-guided optimization (C2). It re-

peats step (3) until a collision occurs or it reaches a predefined

number of search iterations. If a collision occurs, SwarmFuzz

has found a successful SPV, and it outputs the target-victim

drone pair(s), and the spoofing parameters for the collision.

Otherwise, SwarmFuzz reports that no SPVs were found in the

mission, and the mission is resilient to SPVs.

A. Test Definition and Initial Test Creation

A test-run is defined as a set of tuples < T −V, ts,Δt, θ >,

where T − V represents the target-victim drone pair, ts
represents the spoofing start time, Δt represents the spoofing

duration, and θ represents the spoofing direction. We aim for as

few spoofing parameters as possible to minimize the attacker’s

effort, and thus focus on horizontal constant spoofing, i.e.,

always setting the GPS spoofing distance to a constant d (pro-

vided as the input) during time Δt, and only perform spoofing

horizontally. Thus, the value for θ is +1/-1, representing right

and left respectively. The value range for T and V could be

Fig. 3: Overview of SwarmFuzz

any drone in the swarm as long as they are different from each

other. ts and Δt range from 0 to the entire mission time.

We create the initial test case by running the swarm mission

without any spoofing attack. During the test, we collect the

following information: (1) each drone i’s location (xi, yi, zi)
at each timestamp tj , i.e., < xi, yi, zi, tj >; (2) the minimum

distance between each drone i and the obstacle throughout the

mission Dob
i; and (3) the mission duration tmission.

B. Seed scheduling

To tackle C1, we measure the malicious influence of each

target-victim drone pair, and choose drone pairs for fuzzing

in decreasing order of the influence. We first develop an

abstraction called the Swarm Vulnerability Graph (SVG). We

then utilize graph centrality analysis to measure the influence

of a swarm member in the SVG. Finally, we choose the most

influential member as the target drone and the drone closest to

the obstacle as the victim drone, to order the seeds for fuzzing.

Seedpool. The seedpool consists of a set of seeds < T −
V, θ >. We observe that the probability of causing collisions

for each seed depends on two factors: (1) the influence of the

drone pair T −V ; and (2) the Victim drone’s closest Distance

to the Obstacle (VDO) (in the absence of attacks). For factor

(1), the malicious impact of the target drone is a function of its

influence over the whole drone swarm, especially the victim

drone. Thus, choosing the most influential drone as the target

is more likely to cause collisions. For factor (2), a drone closer

to the obstacle (i.e. low VDO) is more promising as a victim

drone, as it requires lower effort to crash into the obstacle.

SVG Definition. The malicious influence of each drone can

be intuitively measured by the swarm member’s reactions to

the spoofing deviation of the target drone. To quantify this

influence, we propose the Swarm Vulnerability Graph (SVG).
The idea behind the SVG is to utilize the centrality analysis in

graph theory [35], which measures a node’s influence in the

graph and is used to identify the graph’s most influential node.

We define SV G = (N,E,W), where N is the set of

nodes representing the swarm members, E is the set of edges

capturing the connections between drones, and W is the set

of weights measuring the local influence on each edge e. SVG

is a directed graph, and the direction of the edge models the

source of the influence. For example, if node ni is influenced

by node nj , a directed edge eij is created from ni to nj .

369

We observe that when the drones are closest to each other,

the influence among drone members are the strongest. There-

fore, we first calculate the average inter-distance among drone

members during the test-run, with the recorded information

< xi, yi, zi, tj > in Section IV-A. We then choose the time tclo
with the shortest average inter-distance, and use the swarm’s

location < xi, yi, zi, tclo > at tclo to construct the SVG.
To construct the SVG, we first analyze each drone i’s

potential velocity direction when the other drone j is under

GPS spoofing at tcol, based on the goals in Section II. We then

create an edge eij if drone i is under the malicious influence

(i.e., closer to the obstacle) of drone j. Finally, we compute

the weight wij based on the inter-distance between drone i and

drone j, to capture the local influence between these drones.
Creating Edges in the SVG. We add an edge eij if and

only if node j has a malicious influence on node i. We infer

the malicious influence based on the distance change between

the drone and the obstacle. If the spoofing deviation in drone

j causes the distance to decrease between drone i and the

obstacle, according to goals in Section II, then drone j has a

malicious influence on drone i, and we add the edge eij .

Fig. 4: Constructing SVG with appropriate spoofing directions.

Fig. 4 shows how to create the edge in the SVG in a

two-drone scenario, for the right spoofing direction. In the

no attack scenario (Fig. 4-(a)), an obstacle blocks drone 1

and drone 2’s way to the destination. Therefore, the swarm

control algorithm generates control commands to make drone

1 avoid the obstacle from the left and drone 2 from the right.

To exploit SPVs, either drone 1 or drone 2 could be chosen

as the target drone to be spoofed. In Fig. 4-(b), drone 1 is

chosen as the target drone and thus deviates to the right. This

deviation decreases the inter-distance between drone 1 and

drone 2. Based on goal (2) in Section II, repulsive velocities

are generated between the two drones. With this new repulsive

velocity, drone 2 moves further away from the obstacle (i.e.,

solid red arrow), thereby leading to an increase in its distance

with the obstacle. This means drone 1 has no malicious

influence on drone 2, and hence the edge e21 is not created.
In Fig. 4-(c), however, drone 2 is chosen as the target drone

and deviates to the right. Similarly, according to goal (3), we

can infer that drone 1 moves closer to the obstacle (i.e., solid

red arrow), thereby leading to a decrease in its distance to

obstacle. This means drone 2 has a malicious influence on

drone 1, and hence the edge e12 is created in Fig. 4-(d). The

edges for the left spoofing can be constructed similarly.
Computing Weights in the SVG. If eij exists, we use wij

to represent the local influence that drone j has on drone i.

Higher the influence, higher is the value of wij . When drone

j is far away from drone i, the deviation in drone j has less

influence on drone i, thus wij is relatively small. Specifically,

we use the cosine value of angle α (Fig. 4-(c)) in the right

triangle involving drones i and j to calculate wij (Fig. 4-(d)).
Centrality Analysis. The centrality of a node represents its

influence. Various centrality measures have been proposed in

the literature, such as the degree centrality [36], Eigenvector

centrality [37], and PageRank centrality [38], etc. We choose

PageRank as it has three properties that make it a good fit

to approximate a drone’s malicious influence in the SVG. (1)

It is efficient to compute for even large graphs using the

power method [39]. (2) It increases a drone’s influence if more

swarm members are maliciously influenced by the drone. (3)

It decreases a drone’s influence if its neighboring drones are

difficult to influence, or if they are many hops away.
We use the SVG to calculate the influence of potential target

drones, and the transposed SVG to calculate the influence of

potential victim drones. This is because the transposed SVG

models how a specific drone is influenced by its neighbors.
Seed Scheduling. As mentioned before, the probability of

causing collisions for each seed depends on (1) the influence

score of the drone pair T −V ; and (2) the VDO. To schedule

the seeds based on these two factors, given θ, we (1) sort

each victim drone based on the VDO in the ascending order;

(2) calculate the summative influence I(θ)ij of each possible

combination of drone pairs; (3) for each victim drone v, choose

the target drone T involved in the drone pairs that have the

highest summative influence, i.e., T = argmax
j

I(θ)jv .

C. Search-based fuzzing
To tackle C2, our goal is to find the appropriate spoofing

parameters (i.e., ts and Δt) that will cause the collision, given

a specific seed. We model this as an optimization problem -

the goal is minimizing the objective function f(ts,Δt), the

distance between the victim drone and the obstacle, subject

to the timing constraints, i.e., ts + Δt < tmission. Collision

occurs only if the global minimum is found to be non-positive.
We make the observation that the objective function f is

convex (Fig. 5-(e)). This is because performing spoofing for

either too short (e.g., Δt1) or too long (e.g., Δt3) a time will

cause the victim drone to avoid the obstacle from either side.

For example, the victim drone avoids the obstacle from the

left side in the absence of the attack (Fig. 5-(a)). A too short

spoofing time Δt1 would make it miss the obstacle from the

left (Fig. 5-(b)), When the time increases to Δt2 (Fig. 5-(c)),

it causes a collision. However, if the spoofing time is too long

and increases to Δt3, the victim drone avoids the obstacle from

the right (Fig. 5-(d)), thus increasing the value of f(ts,Δt)
(Fig. 5-(e)). Thus, we need to find a spoofing time that is

neither too short nor too long, to cause the collision.
Gradient-guided Optimization. Since the objective func-

tion is convex, we use gradient-guided search to efficiently find

an optimal solution. We (1) calculate the partial derivatives of

f(ts,Δt), i.e., ∂f
∂ts

and ∂f
∂Δt ; (2) update the spoofing parame-

ters ts as in Equation 1a and Δt as shown in Equation 1b.

370

Fig. 5: Convex property of the objective function in SwarmFuzz.

ts = max(ts − lr ∗ ∂f

∂ts
, 0) (1a)

Δt = max(Δt− lr ∗ ∂f

∂Δt
, 0) (1b)

lr denotes the learning rate, which is used to scale the input

updates and thus increase the searching speed. We restrict the

value of ts and Δt to be positive, as time cannot be negative.

For each target-victim drone pair seed in the seedpool,

SwarmFuzz repeats the above gradient-guided searching pro-

cess. If a collision occurs, SwarmFuzz reports that it successfully

found the SPV, and outputs < T − V, θ, ts,Δt >. However,

if no collision occurs within the maximum number of search

iterations (set empirically - Section V-A), SwarmFuzz abandons

the current seed and switches to the next seed in the seedpool.

V. EVALUATION

First, we present our experimental setup, and then the results

for effectiveness of SwarmFuzz in various swarm configurations.

Finally, we perform an ablation study of SwarmFuzz’s heuristics.

A. Experimental Setup

Simulator. We use SwarmLab [28], a popular swarm simu-

lator, as it implements the drone dynamics accurately [28], and

also implements state-of-the-art control algorithms. To evalu-

ate SwarmFuzz, we choose the Viscek algorithm [27], one of the

two swarm control algorithms implemented by the simulator.

This algorithm was published in 2018 and has been cited 315
times as of February 2023. It has also been validated on real

hardware with a 30 drone swarm, and performs well in terms

of maintaining the formation as well as obstacle avoidance

[27]. The Viscek algorithm performs collision avoidance based

solely on the GPS sensor reading. Each drone in SwarmLab

is a quadcopter weighted at 0.296kg (by default), and using a

PID (Proportional-Integral-Derivative) flight controller.

GPS Spoofing. As we did not have access to GPS trans-

mitter hardware, we simulate GPS spoofing attacks through

software code modification - this is similar to what a lot of

prior work has done [13], [19]. We launch GPS spoofing in

software by manipulating the GPS reading to GPS + d at

the GPS sampling rate (100 Hz in SwarmLab by default),

where d is the spoofing deviation. We consider d to be 5m and

10m respectively. Most defense techniques [19], [20] ignore

spoofing distances of less than 10m as such small deviations

are indistinguishable from standard GPS offset [33], in order to

avoid false-positives. Therefore, we inject only small amounts

of noise (i.e., 5m/10m) during GPS spoofing as this is hard

to detect by current defense techniques, and thus is stealthy.

Even with this small GPS spoofing distance, we show that the

attacker can achieve her objective with a high success rate.

Mission Details. We consider the whole phase of a mission

that aims to reach a pre-defined destination (233.5m away),

while avoiding a single on-path obstacle. Each instance of this

mission in SwarmLab takes around 120s to finish on average.

The obstacle is placed at roughly the half-way mark of the

mission, so that the drone swarm has enough time to react for

the collision avoidance. Because the obstacle is known to the

mission, the drone swarm can avoid colliding with the obstacle

under normal operation. To reduce the bias, the initial location

of the drone swarm is randomly generated within a range of

0 − 50m relative to the mission starting point. We limit the

range to 50m as 1) the drone swarm is sparse even with a large

size (e.g., 15 drones) and is unlikely to have collisions in the

absence of attack; 2) the drone swarm has sufficient time to

react for collision avoidance in the 233.6m long mission.

Success Metric. In the absence of attacks, we find that no

collision occurs in any mission. We consider an SPV to be

successfully found, if and only if the victim drone crashes

into the on-path obstacle under GPS spoofing. Note that we

do not consider collisions caused directly by the target drone

(i.e., the target drone collides with the victim or the obstacle).

B. Effectiveness of SwarmFuzz across Swarm Configurations

We apply SwarmFuzz to six drone swarm configurations, with

swarm sizes of 5, 10, 15 drones, and GPS spoofing distances of

5m and 10m. We perform 100 missions for each configuration,

to obtain a representative sample. We also manually validate

each vulnerability found by SwarmFuzz via simulation, and

find that all of them are True Positives (TP). Then we measure

in how many missions SwarmFuzz found SPVs- this is the

success rate of SwarmFuzz for that configuration. An alternate

way to measure success rate is the ratio of the number of

SPVs found to the maximum number of SPVs for a given

configuration. However, we cannot easily obtain the maximum

possible number of SPVs as this requires exhaustive sampling

of the input space, which is prohibitively expensive.

TABLE I: Success rates of SwarmFuzz in finding SPVs.

Swarm size 5 drones 10 drones 15 drones
5m spoofing 21% 36% 54%
10m spoofing 49% 59% 74%

Table I shows the results. We observe that success rates of

SwarmFuzz vary from 21% to 74% across different configura-

tions (average 48.8%). This shows that SwarmFuzz is highly
effective in finding SPVs for different swarm configurations.

Further, SwarmFuzz has a higher success rate for missions

when the (1) GPS spoofing distance is higher, as it allows the

attacker to disrupt the swarm more, and (2) when the swarm

371

size is higher, as larger swarms are denser, making obstacle

avoidance more difficult. We analyze the reasons below.

Recall that in Section IV-B, we choose the drones with lower

VDO (i.e., closer to the obstacle) as the promising victim

drones. Given the same GPS spoofing deviation and swarm

size, we find that the success rate varies significantly based

on the VDO of each mission. The VDO is determined based

on the mission parameters, which are generated randomly.

Therefore, to analyze how the VDO influences the success

rate, we choose the cumulative success rate as the metric. For

a VDO value x, the cumulative success rate represents the

success rate of missions whose VDO value is smaller than x.

For example, in Fig. 6a, for all missions with VDO no larger

than 6m, the success rate of SwarmFuzz is 48% (point ’A’).

(a) Success rates in 5 drones.

0 1 2 3 4 5 6 7 8 9

VDO (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
cu

m
ul

at
iv

e
su

cc
es

s
ra

te

5m spoofing
10m spoofing

(b) Success rates in 10 drones.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

VDO (m)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
um

ul
at

iv
e

su
cc

es
s

ra
te

5m spoofing
10m spoofing

(c) Success rates in 15 drones. (d) CDF for the VDO.

Fig. 6: Success rates across swarm configurations.

Fig. 6a- 6c show the cumulative success rate of SwarmFuzz

with respect to the VDO under different swarm configurations.

We make the following observations: (1) The cumulative

success rate of SwarmFuzz roughly decreases with the VDO,

meaning that missions with lower VDOs are more vulnerable

to the attacks exploiting SPVs. This is understandable, as

drone missions that fly closer to the obstacle are easier to

cause collisions with the obstacle, (2) Higher GPS spoofing

distances achieve higher success rates. Again, this is intuitive

as higher spoofing distance causes more disruptions. In Fig. 6a,

in a 5-drone swarm, for missions with VDOs lower than 3m,

even a 5m spoofing can achieve 100% success rate (point ’B’).

Therefore, missions with low VDOs are highly vulnerable.

In Table I, we observe that the success rate increases with

the swarm size. To understand why, we plot the Cumulative

Distribution Function (CDF) of the VDOs in all missions

in Fig. 6d. For a VDO x, the empirical CDF F (x) is the

proportion of missions with VDOs no larger than x. For

example, in Fig. 6d, in a 5-drone swarm, only 20% of missions

TABLE II: Average number of search iterations taken by

SwarmFuzz to find SPVs across swarm configurations.

5-drone 10-drone 15-drone
5m-spoofing 6.33 9.3 12.65
10m-spoofing 6.93 9.91 13.47

have a VDO of atmost 4m. In a 10-drone and 15-drone swarm,

however, the proportion of missions with atmost 4m-VDO

increases to 65% and 98% respectively. Thus, the 5-drone

swarm is more resilient than swarms of 10 and 15 drones.

Therefore, the increase of swarm size leads to a decrease of

VDO, making the swarm mission more vulnerable to attacks.

Fig. 7 shows the GPS spoofing parameters (i.e., the starting

time and the duration) to trigger the SPVs under different

swarm configurations. These are found by SwarmFuzz during

the gradient-based optimization process. We find that the aver-

age GPS spoofing starting time across different configurations

is 6.91s, and the average GPS spoofing duration is 10.33s.

5d-5m 5d-10m 10d-5m 10d-10m 15d-5m 15d-10m

Swarm configurations

0

2

4

6

8

10

12

14

16

18

G
P

S
 s

po
of

in
g

st
ar

t t
im

e
(s

)

(a) GPS spoofing starting time.

5d-5m 5d-10m 10d-5m 10d-10m 15d-5m 15d-10m

Swarm configurations

0

5

10

15

20

25

30

35

40

G
P

S
 s

po
of

in
g

du
ra

tio
n

(s
)

(b) GPS spoofing duration.

Fig. 7: GPS spoofing parameters found by SwarmFuzz across

swarm configurations. In the figure, ”5d-5m” means 5-drone

swarms under 5m-spoofing, and so on.

We also report the average number of search iterations

across different swarm configurations in Table II. Each itera-

tion takes 120s (the mission time), and hence this is correlated

with the runtime. We find that the average runtime increases

with the size of the drone swarm, since the interactions among

drones become more complex. For a given swarm size, the

runtime overheads under different GPS spoofing deviations

exhibit no significant differences across configurations.

C. Ablation Study: Effectiveness of SwarmFuzz’s Heuristics

To the best of our knowledge, there is no existing fuzzing

tool to find SPVs in drone swarms, and thus there is no prior

work we can use for comparison with SwarmFuzz. Instead,

we perform an ablation study and compare SwarmFuzz with

different variants of itself, as well as with random fuzzing.

We used two heuristics to improve the efficiency of

SwarmFuzz in Section IV, (1) using the SVG to prioritize the

influential drone pairs selected for fuzzing; (2) using gradient-

guided optimization to find spoofing parameters for causing

collisions. To evaluate the effect of these heuristics, we com-

pare SwarmFuzz with three other fuzzers as follows. (1) R Fuzz

does not implement either heuristic, and instead randomly

chooses the drone pairs as well as the spoofing parameters.

372

TABLE III: Comparison of fuzzers in 5 drones, 10m spoofing.
SwarmFuzz R Fuzz G Fuzz S Fuzz

Success rate 49% 8% 5% 12%
Avg. iterations 6.93 19.52 6.75 19.85

(2) G Fuzz only implements the gradient-guided optimization

to search for spoofing parameters but not the SVG, instead

choosing these pairs randomly. (3) S Fuzz only implements

the SVG to choose the drones pairs but not the gradient-

guided optimization, instead choosing the spoofing parameters

randomly. Therefore, we evaluate the efficacy of the SVG

by comparing SwarmFuzz with G Fuzz, and the efficacy of

gradient-guided optimization by comparing it with S Fuzz.

We measure two metrics for each fuzzer, the success rate

and the runtime overhead. For runtime overhead, we report the

average number of search iterations taken by the fuzzer - each

iteration takes about 2 minutes (time taken by a mission).

We also cap the number of search iterations for each seed

to 20 in all the fuzzers based on our empirical observations.

We experimentally observe that the number of vulnerabilities

found saturates at 20 search iterations, which corresponds to

40 min. We evaluate the fuzzers with the 5-drone swarm with

a 10m GPS spoofing distance. Table III shows the results.

We find that the success rate of SwarmFuzz is 49%, whereas

the success rate of R Fuzz is just 8%, and that of the G Fuzz

just 5%. Further, the runtime overhead of SwarmFuzz and

G Fuzz is low (about 7 iterations), unlike those of R Fuzz

and S Fuzz (about 20 iterations, i.e., maximum number of

search iterations). Compared to G Fuzz, the success rate of

SwarmFuzz is about 10x higher, while compared to S Fuzz,

its runtime overhead is 3x lower. Thus, the SVG boosts the

success rate of SwarmFuzz by almost 10x, while the gradient-

guided optimization reduces its runtime overhead by about

3x. Compared to the random fuzzer (R Fuzz), SwarmFuzz has

about 6x higher success rate and 3x smaller runtime overhead.

VI. DISCUSSION

Implications SwarmFuzz has a high success rate in finding

SPVs in drone swarms, within a small amount of time. This

allows these vulnerable missions to be discovered early.

SwarmFuzz finds that swarm missions with a larger size

are more vulnerable to attacks exploiting SPVs, since they

have low VDOs. This suggests that designers should expend

more effort in securing large-size drone swarms. SwarmFuzz

further finds that swarm missions with low VDOs are generally

more vulnerable. Therefore, if the VDO is low, then a stricter

protection technique against GPS spoofing attacks may be

needed. These are potential future work directions.

Moreover, to the best of our knowledge, there are no fault-

tolerance mechanisms [40], [41] (e.g., achieving agreement

and consensus among drones; verifying other drones’ location

through other sensors) deployed in mainstream distributed

drone swarm systems today. Our work provides a strong

motivation for why drone swarm algorithms need such fault-

tolerance mechanisms, in order to be resilient to SPVs.

Limitations Our work has two limitations. First, we only

tested SwarmFuzz on one swarm control algorithm. However,

SwarmFuzz does not utilize any knowledge specific to this

swarm control algorithm or the mission during fuzzing. In-

stead, it only uses general goals designed in the swarm con-

trol algorithms and physical properties of collisions, i.e., the

convex property of the objective function. Therefore, it should

also work on other decentralized swarm control algorithms.

Second, in our experiments, we used missions of fixed

length, and with a fixed obstacle placement in order to keep the

experiment simple. However, to model other types of missions,

for example, with multiple obstacles, we only need to change

one input - the coordinates of the obstacle for collision. Hence,

SwarmFuzz should also work on other swarm missions.

VII. RELATED WORK

Physical attack on drones have targeted GPS [9], [10],

[29]–[31], [42], [43], gyroscope [12], accelerometer [11] and

optical-flow sensors [44]. However, these attacks only focus

on single drones, and none of them have considered drone

swarms. Defense techniques against physical attacks targeting

GPS sensors have also been proposed. Unfortunately, most

defense techniques [19], [20] ignore 0 − 10m GPS spoofing

distance as it is indistinguishable from the standard GPS offset

[33], and is sufficient to ensure the safety of a single drone.

Thus, these defenses cannot handle attacks exploiting SPVs.

Fuzzing has been used in drones for finding software bugs

[45], policy violation bugs [46], and logic flaws [5], [47].

Model checking has been used to evaluate the effects of a

single drone’s sensor failures [48]. SWARMFLAWFINDER

[5] tests the drone swarm’s behavior by introducing an external

attack drone, which incurs relatively high costs and is easy

to detect with intruder detection techniques [7]. Other work

finds vulnerabilities in drone swarms by introducing spurious

messages in the swarm’s communication [6]. However, such

attacks can be prevented using message encryption [34].

Therefore, prior work cannot find SPVs in drone swarms. In

a prior poster [49], we demonstrated the existence of SPVs,

but did not design a systematic methodology to find them.

VIII. CONCLUSION

In this paper, we highlight a new kind of vulnerability

in drone swarms called Swarm Propagation Vulnerabilities

(SPVs), which can be exploited to indirectly cause disruptions

(e.g., collisions) in drone swarms with GPS spoofing. To help

defenders evaluate the resilience of swarms against SPVs,

we propose SwarmFuzz, a fuzzing technique to efficiently find

SPVs in drone swarms. SwarmFuzz utilizes graph centrality

analysis to find influential drone pairs and gradient-guided op-

timization to find the spoofing parameters to cause collisions.

We evaluate SwarmFuzz on a popular swarm control algo-

rithm. We find that (1) SwarmFuzz can achieve an average

success rate of 48.8% in finding SPVs; (2) swarms of larger

size are more vulnerable to SPVs, for a given spoofing

distance; and (3) SwarmFuzz’s efficacy and efficiency are due to

the graph centrality analysis and gradient-guided optimization.

373

ACKNOWLEDGEMENTS

This work was partially supported by the Natural Sciences

and Engineering Research Council of Canada (NSERC), and

a Four Year Fellowship from UBC. We acknowledge travel

support from the Institute for Computing, Information and

Cognitive Systems (ICICS) at UBC. We also thank the anony-

mous reviewers of DSN’23 for their helpful comments.

REFERENCES

[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, pp. 1–41, 2013.

[2] A. Boyd, “The pentagon wants ai-driven drone swarms for search
and rescue ops,” Available at: https://www.nextgov.com/emerging-
tech/2019/12/pentagon-wants-ai-driven-drone-swarms-search-and-
rescue-ops/162113/, 2019.

[3] “Droneseed,” Available at: https://droneseed.com/rapid-reforestation.
[4] S. Dimitropoulos, “If one drone isn’t enough, try a drone swarm,”

Available at: https://www.bbc.com/news/business-49177704, 2019.
[5] C. Jung, A. Ahad, Y. Jeon, and Y. Kwon, “Swarmflawfinder: Discov-

ering and exploiting logic flaws of swarm algorithms,” in 2022 IEEE
Symposium on Security and Privacy (SP), 2022.

[6] X. Huang, Y. Tian, Y. He, E. Tong, W. Niu, C. Li, J. Liu, and L. Chang,
“Exposing spoofing attack on flocking-based unmanned aerial vehicle
cluster: A threat to swarm intelligence,” Security and Communication
Networks, vol. 2020, pp. 1–15, 2020.

[7] M. R. Brust, G. Danoy, P. Bouvry, D. Gashi, H. Pathak, and M. P.
Gonçalves, “Defending against intrusion of malicious uavs with net-
worked uav defense swarms,” in 2017 IEEE 42nd conference on local
computer networks workshops (LCN workshops). IEEE, 2017, pp. 103–
111.

[8] L. Liu, H. Qian, and F. Hu, “Random label based security authentication
mechanism for large-scale uav swarm,” in 2019 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking. IEEE, 2019, pp. 229–235.

[9] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Proceedings of
the 2011 ACM SIGSAC Conference on Computer and Communications
Security, 2011.

[10] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon, P. M.
Kintner et al., “Assessing the spoofing threat: Development of a portable
gps civilian spoofer,” in Proceedings of the 21st International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION
GNSS 2008), 2008, pp. 2314–2325.

[11] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks,” in 2017 IEEE European Symposium on Security and Privacy,
2017.

[12] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), Aug. 2015.

[13] P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of control: Stealthy
attacks against robotic vehicles protected by control-based techniques,”
in Proceedings of the 35th Annual Computer Security Applications
Conference, 2019.

[14] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil: Security
of multi-sensor fusion based localization in high-level autonomous
driving under gps spoofing,” in Proceedings of the 29th USENIX Security
Symposium (USENIX Security ’20), Aug. 2020.

[15] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys,
“Unmanned aircraft capture and control via gps spoofing,” Journal of
Field Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[16] “Gps jammers used in 85% of cargo truck thefts – mexico has taken
action,” Available at: https://rntfnd.org/2020/10/30/gps-jammers-used-
in-85-of-cargo-truck-thefts-mexico-has-taken-action/, October 2020.

[17] W. Z. Simone McCarthy and D. Tsang, “Hk $1 million in damage
caused by gps jamming that caused 46 drones to plummet during hong
kong show,” Available at: https://www.scmp.com/news/hong-kong/law-
and-crime/article/2170669/hk13-million-damage-caused-gps-jamming-
caused-46-drones, 2018.

[18] M. Posch, “Knowing your place: the implications of gps spoofing and
jamming,” Available at: https://hackaday.com/2022/05/23/knowing-your-
place-the-implications-of-gps-spoofing-and-jamming/, 2022.

[19] P. Dash, G. Li, Z. Chen, M. Karimibiuki, and K. Pattabiraman, “Pid-
piper: Recovering robotic vehicles from physical attacks,” in 2021 51st
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2021.

[20] H. Sathaye, G. LaMountain, P. Closas, and A. Ranganathan, “Semperfi:
Anti-spoofing gps receiver for uavs,” in Proceedings 2022 Network and
Distributed System Security Symposium, 2022.

[21] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFuzzer: Finding input validation bugs in robotic
vehicles through Control-Guided testing,” in 28th USENIX Security
Symposium (USENIX Security 19), Aug. 2019.

[22] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles,” in Proceedings 2021 Net-
work and Distributed System Security Symposium, 2021.

[23] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz, “kafl:
Hardware-assisted feedback fuzzing for os kernels.” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 167–182.

[24] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in Proceedings
2019 Network and Distributed System Security Symposium, 2019.

[25] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled search,”
in 2018 IEEE Symposium on Security and Privacy (SP), 2018.

[26] D. She, A. Shah, and S. Jana, “Effective seed scheduling for fuzzing
with graph centrality analysis,” in 2022 IEEE Symposium on Security
and Privacy (SP), 2022.

[27] G. Vásárhelyi, C. Virágh, G. Somorjai, T. Nepusz, A. E. Eiben, and
T. Vicsek, “Optimized flocking of autonomous drones in confined
environments,” Science Robotics, vol. 3, no. 20, p. eaat3536, 2018.

[28] E. Soria, F. Schiano, and D. Floreano, “Swarmlab: a matlab drone swarm
simulator,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020, pp. 8005–8011.

[29] H. Sathaye, M. Strohmeier, V. Lenders, and A. Ranganathan, “An
experimental study of GPS spoofing and takeover attacks on UAVs,”
in 31st USENIX Security Symposium (USENIX Security 22), Aug. 2022.

[30] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor
beam: Safe-hijacking of consumer drones with adaptive gps spoofing,”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2, pp.
1–26, 2019.

[31] D. He, Y. Qiao, S. Chen, X. Du, W. Chen, S. Zhu, and M. Guizani, “A
friendly and low-cost technique for capturing non-cooperative civilian
unmanned aerial vehicles,” IEEE Network, 2019.

[32] K. D. Wesson, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “An
evaluation of the vestigial signal defense for civil gps anti-spoofing,” in
Proceedings of the 24th International Technical Meeting of the Satellite
Division of The institute of navigation (ION GNSS 2011), 2011, pp.
2646–2656.

[33] “Global positioning system standard positioning service performance
standard,” Available at: https://www.gps.gov/technical/ps/2008-SPS-
performance-standard.pdf, 2008.

[34] Y.-M. Kwon, J. Yu, B.-M. Cho, Y. Eun, and K.-J. Park, “Empirical
analysis of mavlink protocol vulnerability for attacking unmanned aerial
vehicles,” IEEE Access, 2018.

[35] M. E. Newman, “The mathematics of networks,” The new palgrave
encyclopedia of economics, vol. 2, no. 2008, pp. 1–12, 2008.

[36] W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Encyclopedia
of systems biology. Springer New York, 2013, vol. 402.

[37] J. Golbeck, Analyzing the social web. Newnes, 2013.

[38] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford infolab, Tech. Rep., 1999.

[39] D. Herrmann and D. Herrmann, “Von-mises-iteration,” Numerische
Mathematik—40 BASIC-Programme, pp. 93–96, 1983.

[40] M. Dorigo, G. Theraulaz, and V. Trianni, “Swarm robotics: Past, present,
and future [point of view],” Proceedings of the IEEE, vol. 109, no. 7,
pp. 1152–1165, 2021.

[41] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Fault-tolerant
cooperative navigation of networked uav swarms for forest fire moni-
toring,” Aerospace Science and Technology, vol. 123, p. 107494, 2022.

[42] S. P. Arteaga, L. A. M. Hernández, G. S. Pérez, A. L. S. Orozco, and
L. J. G. Villalba, “Analysis of the gps spoofing vulnerability in the drone
3dr solo,” IEEE Access, vol. 7, pp. 51 782–51 789, 2019.

374

[43] J. Gaspar, R. Ferreira, P. Sebastião, and N. Souto, “Capture of uavs
through gps spoofing using low-cost sdr platforms,” Wireless Personal
Communications, vol. 115, pp. 2729–2754, 2020.

[44] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and V. Singh, “Control-
ling uavs with sensor input spoofing attacks,” in 10th USENIX Workshop
on Offensive Technologies (WOOT 16), 2016.

[45] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang,
X. Deng, and D. Xu, “RVFuzzer: Finding input validation bugs in robotic
vehicles through Control-Guided testing,” in 28th USENIX Security
Symposium (USENIX Security 19), Aug. 2019.

[46] H. Kim, M. O. Ozmen, A. Bianchi, Z. B. Celik, and D. Xu, “Pgfuzz:
Policy-guided fuzzing for robotic vehicles,” in Proceedings 2021 Net-
work and Distributed System Security Symposium, 2021.

[47] C. Jung, A. Ahad, J. Jung, S. Elbaum, and Y. Kwon, “Swarmbug:
Debugging configuration bugs in swarm robotics,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021.

[48] M. Taylor, H. Chen, F. Qin, and C. Stewart, “Avis: In-situ model
checking for unmanned aerial vehicles,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021.

[49] Y. E. Yao, P. Dash, and K. Pattabiraman, “Poster: May the swarm be with
you: Sensor spoofing attacks against drone swarms,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, p. 3511–3513.

375

