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Drone Swarms in Large-scale Missions
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Drone Swarm System
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Security Threats
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e Logic flaws
[S&P'22]

e Masquerade
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GPS Spoofing Attack
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Mass GPS Spoofing Attack in
Black Sea?

B South China Morning Post
PUBLISHED JUL 11, 2017 8:27 PM BY DANA GOWARD

HKS1 million in damage caused by GPS jamming that caused 46
drones to plummet during Hong Kong show




Threat Model

Topology



Swarm Propagation Vulnerabilities (SPVs)

e The vulnerabilities exploited by GPS spoofing attacks in drone swarms.
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What causes SPVs?

Answer:

Design choices in swarm x x

control algorithms.
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Our goal

To automatically find SPVs
before swarm deployment

To assess the swarm
missions against SPVs
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Automatically finding SPVs: Challenges

Challenge 1 (C1) Observation 1

e Selection of target-victim drone pairs | e Target Drone

o Alarge number of combinations o Most influential

e \Victim Drone

; e ? o Under the most influence
s \ x | o Closest to the obstacle




Automatically finding SPVs: Challenges

Challenge 2 (C2)

e Selection of attack parameters

o Spoofing start time
o Spoofing duration
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Observation 2

e Minimize VDO distance

O  Convex optimization

VDO . /4 —

" Spoofing
duration

*VDO: the Victim drone’s closest Distance to the Obstacle 12



Our solution: SwarmFuzz

-
-

Inputs Outputs
Swarm E-—-»?nitial test ]

| l Success
control | |
algorithm ' . _"’i e Drone pairs

Seed Scheduling J | ® Spoofing params
[ Mission ] SVG + Centrality analysis '

l | Timeout
Spoofing ?Search-based fuzzing}— g o spy
deviation | 0 SFVS

SVG: Swarm vulnerability graph 13



Our solution: SwarmFuzz
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Our solution: SwarmFuzz
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Seed Scheduling
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Our solution: SwarmFuzz
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VDO

Search-based fuzzing

Convex optimization

» GPS spoofing duration
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VDO

Search-based fuzzing

Convex optimization

Gradient-descent search

» GPS spoofing duration
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Evaluation

> 233m

Simulator: Swarmlab E N
Swarm control algorithm: Viscek

Swarm size: 5/10/ 15 drones _ %;;%

GPS spoofing deviation: 5 /10m 120m <

(acceptable GPS fault) \ x
Success: victim drone crashes x 2"2 x y
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Effectiveness of SwarmFuzz

Success rates of SwarmFuzz in finding SPVs

5 drones | 10 drones | 15 drones

5m spoofing 21% 36% 54%

Avg. 48.8%
10m spoofing 49% 59% 74%

Highly effective for different swarm configurations
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Effectiveness of SwarmFuzz

Success rates of SwarmFuzz in finding SPVs

5 drones | 10 drones | 15 drones

5m spoofing [ 21% 36% 54% }

10m spoofing [ 49% 59% 74% }

Larger swarm sizes mm) Higher success rate




Effectiveness of SwarmFuzz

Success rates of SwarmFuzz in finding SPVs

5 drones | 10 drones | 15 drones
5m spoofing 21% 36% 54%
10m spoofing l 49% J 59% 74%

Larger GPS spoofing deviation =smp Higher success rate
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Ablation study
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Ablation study
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SVG boosts the success rate by up to 10x.

Gradient-guided optimization reduces the overhead by up to 3x.
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Takeaways

e Swarm missions with a larger size are more vulnerable
> Secure large-size drone swarms

e |[f the swarm mission is found to be vulnerable to SPVs
> Tune the parameters in the control algorithm

e Need fault-tolerance mechanisms
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Future work

e Extend SwarmFuzz to other swarm control algorithms
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Summary

SPVs: vulnerabilities in swarm control algorithms
exploited by GPS spoofing attacks

SwarmFuzz: A fuzzing framework to discover SPVs, and
help to evaluate the resilience of the swarm beforehand

Use SVG and gradient descent to find SPVs efficiently

Code at: https://qithub.com/DependableSystemsLab/SwarmFuzz

Yingao (Elaine) Yao
elainey@ece.ubc.ca o8



Summary
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